LETTERS

Assessing an outbreak of tuberculosis in an English college population

To the Editors:

In October 2008, a sixth form college student in England, UK, who had had a cough for 2 months was diagnosed with sputum smear-positive cavitatory pulmonary tuberculosis. An investigation led to the identification of 19 cases of active tuberculosis among 2,284 students. Here, we describe the outbreak and investigation into the factors associated with active tuberculosis.

The study population consisted of students enrolled at the college for daytime courses. All participants were aged >16 yrs. Members of staff who directly taught these students were also screened. Between October 2008 and December 2009, students, friends of the index case and staff at the college were interviewed. The interviews were used to collect demographic and clinical information, including symptoms suggestive of tuberculosis. At the same time, a blood sample was drawn from each participant for interferon- γ release assay (IGRA) testing [1, 2]. Following the screening of household contacts and friends of the index case, the students at the school were assessed in concentric circles of decreasing intensity of exposure in three groups (table 1) [3]. Those with a positive IGRA result from any screening round were recalled for chest radiography and clinical review at a respiratory medicine clinic. Preventative therapy was offered to all those with no evidence of active tuberculosis and a positive IGRA result who were <35 yrs of age, according to national guidelines [4]. Detailed results of the IGRA tests are described elsewhere [5].

Where relevant samples were available, following decontamination, direct microscopy and culture using a liquid culture system were performed and, where positive, subsequent testing for sensitivity to standard antituberculosis drugs, followed by 24-locus *Mycobacterium* interspersed repetitive unit–variablenumber tandem repeats typing (MIRU-VNTR) [6]. In addition to a detailed clinical review, patients with suspected active tuberculosis had further tests, including computed tomography (CT) and bronchoscopy, where appropriate. Active tuberculosis was defined as any individual with culture-confirmed disease caused by *Mycobacterium tuberculosis* or a clinical presentation consistent with active tuberculosis where the clinician had decided to give a full 6 months of treatment.

Adjusted and unadjusted odd ratios were calculated using logistic regression analysis to investigate factors associated with active tuberculosis. All variables considered *a priori* to be risk factors for tuberculosis, including age, sex, place of birth, ethnicity, contact with the index case and lack of bacille Calmette–Guérin (BCG) vaccination, were modelled. We investigated interaction between risk factors for tuberculosis using the likelihood ratio test. Data were analysed using the statistical software STATA (version 11; StataCorp, College Station, TX, USA). The median age of the students was 17.8 yrs (interquartile range (IQR) 17.3–18.5 yrs) and 1,055 (46.2%) were male. Among the students, 49.6% were BCG-vaccinated, 90.2% were of white ethnicity and 18.8% had recently travelled to a high-incidence country. The participants travelled to a number of countries, including China, Russia, India, Bangladesh and several countries in sub-Saharan Africa; 400 (17.5%) had a positive IGRA. The median age of the staff was 46.8 yrs (IQR 38.5–55.3 yrs). No active tuberculosis cases were diagnosed among staff members.

The index case attended the college for <3 weeks during September 2008. Excluding the index case, 19 cases of active tuberculosis were diagnosed and treated. Eight cases were culture confirmed as *M. tuberculosis*; seven cases were confirmed as having an indistinguishable 24-locus MIRU-VNTR genotype (42234 2742511334 422423255) as the index case; a further case had 23 identical digits with a missing 24th digit. Of the eight culture-confirmed cases, two were sputum smear and culture positive; one case was sputum smear-negative but culture positive; four cases were positive on culturing washings obtained from bronchoalveolar lavage; and one case was positive on culture of pleural biopsy material. The two sputum smear-positive cases were not symptomatic while attending the college. The diagnosis of cases who were not microbiologically confirmed was largely based on radiological findings, including CT. In total, nine cases were asymptomatic.

During the first two rounds of screening, nine cases of active tuberculosis were identified (including three who were also friends or extended family). Two cases outside the groups screened then presented clinically, prompting a third round of screening that identified a further eight cases. The yield therefore was 3, 2 and 0.5% in groups 1, 2 and 3, respectively. table 1 shows the characteristics of all cases. All isolates were fully susceptible to first-line antituberculosis drugs. The median age of the active tuberculosis cases was 17.2 yrs (IQR 17–18.3 yrs) and 12 (63.2%) out of 19 were male. In the fully adjusted model (table 2), only age was associated with the risk of active tuberculosis, with younger students being at a higher risk of tuberculosis (OR 0.23, 95 CI 0.07–0.75).

This study found that the only independent risk factor for active tuberculosis was age. Although the incidence of tuberculosis has increased in the UK over the last two decades [7], the rate of active tuberculosis identified in this college (875 cases per 100,000 persons) is several times higher than the age-equivalent rate for England (14.6 cases per 100,000). A limitation of the study was the relatively small number of active tuberculosis cases, reducing our ability to investigate the risk factors for active disease. The time taken to screen the entire college possibly contributed to the emergence of secondary cases.

TABLE	BLE 1 Clinical characteristics of active tuberculosis cases				
Case	Clinical details	Group [#]			
1	Symptoms started July 2008	Index case			
	Smear and culture positive				
	Treatment started October 2008				
2	Friend of index case	Group 1			
	No symptoms				
	IGRA positive December 2008				
	CXR: right mid-zone nodules				
	CT scan showed multiple small cavities				
	BAL smear and culture negative				
_	Treatment started November 2009				
3	Cough and sputum December 2008	Group 1			
	Smear and culture negative				
	CXR and CT: small nodules right mid-zone				
	Started treatment February 2009				
4	No symptoms	Group 2			
	Smear negative				
	IGRA positive				
	BAL culture positive, same genotype				
	Treatment started April 13, 2009				
-		0			
5	Smear negative	Group 2			
	CYP in April 2000: right upper zone multiple equities				
	BAL culture positive same denotype				
	Treatment started April 2009				
6	In same tutor group as another case	Group 2			
Ŭ	IGBA positive	Group 2			
	Onset of cough and weight loss in April 2009				
	Sputum smear negative				
	Culture positive, same genotype				
	CXR normal				
	Treatment started May 2009				
7	No symptoms	Group 2			
	IGRA positive				
	CXR February 2009 and CT scan: left hilar gland				
	and left hilar shadow				
	Treatment started May 2009				
8	No symptoms	Group 2			
	IGRA positive				
	CXR and CT scan: left upper zone shadowing				
	BAL culture negative				
	Treatment started June 2009				
9	Cough, fever, night sweats and weight loss since	Group 3			
	December 2008				
	GP presentation				
	Had indeterminate IGRA in April 2009				
	Pleural biopsy histology: caseating granulomata				
	PCR negative				
	Treatment started May 2009	0			
10	Cough, weight loss	Group 3			
	CXR and CT: left hilar glands				
	Smear and culture negative				
	Exterioed family of Index Case				
	Treatment Statted April 2009				

ТАВ	ILE 1 cont.	
Case	Clinical details	Group [#]
11	Eye symptoms from June 2009	Group 3
	IGPA positivo	
	CYR normal	
	Treatment for eve TB started July 2009	
12	No symptoms	Group 3
	CXR parenchymal changes and CT scan showed left apex	Group o
	changes	
	BAL smear negative and culture positive, same genotype	
	Treatment started September 2009	
13	Attended school for a few hours in January and May 2009	Group 3
	Diagnosed through GP with cough, sputum, haemoptysis	
	and night sweats which started in April 2009	
	Smear and culture positive, same genotype	
	Treatment started August 27, 2009	
14	No respiratory symptoms	Group 3
	Cervical node biopsy in Hong Kong, China	
	Smear and culture not performed	
	Histological diagnosis	
	Treated in Hong Kong from April 2009	
15	Cough, night sweats from June 2009	Group 3
	IGRA positive	
	CXR: cavities right upper lobe, sputum smear and culture	
	Treatment started July 2009	
16	No symptoms	Group 3
10	CT: left upper zone early cavitation	Group o
	BAL smear negative and culture positive, same genotype	
	Treatment started July 2009	
17	Diagnosed in July 2009 with lymph node disease	Group 3
	CT scan: left lower lobe changes	
	BAL: smear and culture negative	
	Treatment started July 2009	
18	Cough, night sweats, weight loss	Group 3
	IGRA positive, pleural biopsy	
	Smear positive	
	PCR negative	
	CXR: effusion	
	Culture positive, same genotype except last digit missing	01
19	Cough, weight loss in November 2008	Other
	Allehded college 2007–2008	
	Soutum smear and culture positive, same depotype	
	Treatment started April 2009	
20	Fever, night sweats, weight loss, no couch from January 2009	Other
	Friend of index case but attended a different college	
	IGRA positive	
	CXR and CT scan: hilar node and parenchymal changes;	
	left lower lobe apical nodule	
	Treatment started July 2009	

IGRA: interferon- γ release assay; CXR: chest radiography; CT: computed tomography; BAL: bronchoalveolar lavage; GP: general practitioner. [#]: group 1 included those who shared classroom groups with cumulative exposures >2 h with the index case and friends of the index case, group 2 included students who attended the same general studies group with exposure time between 1 and 2 h in a large hall setting, and group 3 included the rest of the college.

TABLE 2Univariable and multivariable analysis of the
factors associated with active tuberculosis
among 2,284 students

Characteristic	Median or n/N	Univariable	Multivariable	
		OR (95% CI)	OR (95% Cl)	p-value [*]
Age yrs	17.2	0.27 (0.11–0.67)	0.23 (0.07–0.75)	0.011
Sex				
Female	7/19	1	1	0.488
Male	12/19	0.89 (0.73–4.90)	1.50 (0.40–5.55)	
UK born [¶]				
No	2/19	1	1	
Yes	17/19	0.65 (0.15–2.87)		
Travel to high-				
burden country				
No	14/19	1	1	0.200
Yes	5/19	1.81 (0.63–5.17)	2.20 (0.55–8.84)	
White ethnicity				
No	7/19	1	1	0.055
Yes	12/19	0.20	0.26	
		(0.07–0.53)	(0.05–1.43)	
Group				
1		1	1	0.371
2		0.72	2.14	
		(0.19–2.72)	(0.23–20.04)	
3		0.18	0.60	
		(0.06–0.59)	(0.07-4.96)	
BCG				
No	15/19	1	1	0.780
Yes	4/19	0.38	1.06	
		(0.12–1.25)	(0.22–5.23)	

BCG: bacille Calmette–Guérin. #: likelihood ratio test; 1: perfectly predicts outcome in the multivariable model.

While this may, in part, question the "stone in the pond" approach [8], we contend that this incident is unusual. A time-to-event analysis would have been more appropriate to account for right censoring. The lack of dates of contact with infectious cases precluded hazard analysis.

We conclude that this outbreak resulted in transmission within the college, as evidenced by indistinguishable DNA fingerprints of the *M. tuberculosis* strains. Public health services should ensure the prompt detection and management of such outbreaks.

I. Abubakar^{*,##}, T. Matthews^{#,##}, D. Harmer[#], E. Okereke[¶], K. Crawford[#], T. Hall[#], T. Collyns⁺, G. Smith[§], A. Barrett^f and S. Baugh^{**}

*TB Section, Health Protection Agency (HPA), London, [#]North Yorkshire and Humber Health Protection Unit, Hull, [¶]HPA Yorkshire and Humber, and ⁺Leeds Teaching Hospitals Trust, St James' University Hospital, Leeds, [§]HPA Regional Centre for Mycobacteriology, Birmingham, ^{*f*}HPA Regional Centre for Mycobacteriology, Newcastle-upon-Tyne, and **Northern Lincolnshire and Goole Hospitals NHS Foundation Trust, Grimsby, UK. ^{##}These authors contributed equally.

Correspondence: I. Abubakar, Tuberculosis Section, Health Protection Agency, 61 Colindale Avenue, London, NW9 5EQ, UK. E-mail: ibrahim.abubakar@hpa.org.uk

Support Statement: The investigation was funded by the local National Health Service and the Health Protection Agency as part of the service response to the outbreak and, therefore, no ethical review was required. No external funding was received.

Statement of Interest: None declared.

Acknowledgements: Individuals too numerous to identify were involved in the management of this outbreak, including clinical and administrative support staff from the local health protection unit, primary care trust, acute hospital, local and regional laboratories, and staff and students of the college.

REFERENCES

- 1 Kik SV, Franken WPJ, Mensen M, *et al.* Predictive value for progression to tuberculosis by IGRA and TST in immigrant contacts. *Eur Respir J* 2010; 35: 1346–1353.
- **2** Diel R, Goletti D, Ferrara G, *et al*. Interferon-γ release assays for the diagnosis of latent *Mycobacterium tuberculosis* infection: a systematic review and meta-analysis. *Eur Respir J* 2011; 37: 88–99.
- **3** Erkens CGM, Kamphorst M, Abubakar I, *et al.* Tuberculosis contact investigation in low prevalence countries: a European consensus. *Eur Respir J* 2010; 36: 925–949.
- 4 National Collaborating Centre for Chronic Conditions. Tuberculosis: Clinical Diagnosis and Management of Tuberculosis, and Measures for its Prevention and Control. London, Royal College of Physicians, 2009.
- 5 Abubakar I, Matthews T, Harmer D, et al. Assessing the effect of foreign travel and protection by BCG vaccination on the spread of tuberculosis in a low burden country. Euro Surveill 2011; 16: 19826.
- **6** Gibson A, Brown T, Baker L, *et al.* Can 15-locus mycobacterial interspersed repetitive unit–variable-number tandem repeat analysis provide insight into the evolution of *Mycobacterium tuberculosis? Appl Environ Microbiol* 2005; 71: 8207–8213.
- 7 Crofts JP, Gelb D, Andrews N, *et al.* Investigating tuberculosis trends in England. *Public Health* 2008; 122: 1302–1310.
- 8 Veen J. Microepidemics of tuberculosis: the stone-in-the-pond principle. *Tuber Lung Dis* 1992; 73: 73–76.

DOI: 10.1183/09031936.00031711