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Inhibition of airway proteases in cystic

fibrosis lung disease
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ABSTRACT: Progressive lung disease determines the morbidity and mortality of cystic fibrosis

(CF) patients.

CF lung disease is characterised by endobronchial inflammation sustained by bacterial

infections and an ongoing accumulation of airway neutrophils. Activated or necrotic neutrophils

liberate proteases that cause damage to structural, cellular and soluble components of the

pulmonary microenvironment.

Among various proteases released by airway cells, elastase is considered to play the major role

in CF lung disease. Based on this concept, several therapeutic approaches have been developed

to inhibit free elastolytic activity, including small synthetic chemical compounds, semi-synthetic

inhibitors and natural inhibitors of free elastase.

The present review summarises and discusses the pathophysiological rationales, methodolo-

gical requirements and clinical implications of inhibition of airway proteases in cystic fibrosis lung

disease.
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D
espite various therapeutic advances,
.90% of cystic fibrosis (CF) patients still
die due to respiratory failure. The air-

ways of the majority of patients with CF are
chronically infected with bacterial pathogens,
especially Pseudomonas aeruginosa [1]. As a con-
sequence, large numbers of neutrophils accumu-
late in CF airways, resulting in sustained
endobronchial inflammation [2]. The duration
and intensity of the airway inflammation, how-
ever, appear to be much more pronounced than
required for the removal of the offending patho-
gens. This excessive inflammatory response is
probably related to the disease-causing mutations
in the CF transmembrane conductance regulator
(CFTR) gene. However, the exact pathogenic
mechanisms involved have not been completely
elucidated. Increased mucus viscosity, impaired
local host defence, and innate and adaptive
immune mechanisms seem to be involved.
Other mechanisms, such as gain of function
resulting from mutated CFTR causing an
enhanced endoplasmic reticulum stress response
and pro-inflammatory activity may also play a
role [3]. As a result, CF airways exhibit sustained
inflammation that causes harm to the lungs,
leading to irreversible collateral damage caused
by chronic airway destruction and remodelling.

Despite several lines of pathophysiological evi-
dence to support the concept of an overwhelming
pro-inflammatory response in CF airways [2],
only a few clinical studies have successfully
established anti-inflammatory strategies in
patients with CF lung disease, such as the
application of ibuprofen [4–6] and recombinant
human DNase [7]. Other studies have demon-
strated the ineffectiveness or the occurrence of
adverse side-effects of approaches involving
inhaled steroids [8] and a leukotriene (LT)B4

antagonist [9]. A major difficulty in evaluating
anti-inflammatory treatments in clinical trials
remains selection of appropriate outcome mea-
sures (table 1). Possible outcome parameters
include lung function (spirometry), broncho-
alveolar lavage (BAL) fluid (BALF) analysis,
sputum analysis, sputum microbiology, chest
computed tomography (CT), infant and toddler
lung function such as measured via lung clear-
ance index, frequency of pulmonary exacerba-
tions, quality-of-life assessments, aerosol
deposition and clinical symptom scores. The
various outcome measures should be considered
according to the phase of the clinical trial, as
depicted in table 1. The references given in
table 1 indicate studies in which the respective
outcome measures have been used.
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Traditionally used pulmonary outcomes, such as forced
expiratory volume in one second (FEV1), reflect major changes
in pulmonary function but are considered less appropriate for
monitoring more subtle changes. Therefore, novel outcome
parameters, such as CT scan results, may become increasingly
important but still require more extensive validation. Other
outcome measures, such as exacerbation rate or quality of life,
might additionally help in the monitoring of CF patients’ lung
disease, and should be considered when performing clinical
studies. Inflammatory outcome markers in blood, sputum or
urine have been shown to be especially helpful in the
assessment of antibiotic treatment [20–22].

Therefore, it remains an ongoing challenge for clinical
researchers to define and carefully evaluate outcome measures
that permit the monitoring of airway inflammation and
investigation of the effect of anti-inflammatory interventions
in patients with CF lung disease. For a more extensive
discussion concerning outcome measures in clinical trials of
CF, see a previous review [23].

PROTEASE–ANTIPROTEASE IMBALANCE IN CF
AIRWAYS
Previous studies have demonstrated that CF airway fluids
contain large amounts of pro-inflammatory mediators, espe-
cially interleukin (IL)-8, which attract large numbers of
neutrophils into the airways [24]. This should provide an
initial line of immune defence against bacterial pathogens.
However, the recruited airway neutrophils seem unable to
clear the local pathogens, but instead accumulate, undergo
secondary necrosis and liberate their intracellular components,
such as serine proteases. Serine proteases are physiologically
important in both intracellular [25, 26] and peri-/extracellular

killing, as recently demonstrated by the identification of
neutrophil extracellular traps that capture bacteria and facil-
itate a close interaction of the pathogen with released
proteases, finally resulting in bacterial killing [27–30].

In chronic disease conditions, the amount of proteases exceeds
the neutralising capacity of antiproteases. The protease–
antiprotease imbalance hypothesis of chronic lung disease
suggests that protease levels in the lower respiratory tract are a
major determinant of pulmonary damage and emphysema
[31]. This hypothesis is corroborated by the finding that disease
severity in patients with chronic bronchitis and pulmonary
emphysema is positively related to pulmonary protease load
and inversely related to the antiprotease shield [32].

In CF patients, several studies have found a correlation
between proteases on the one hand and tissue damage and
disease severity on the other [33–36]. The local protease–
antiprotease imbalance in CF airway fluids has been demon-
strated to be established by the age of 1 yr, and is probably
sustained chronically thereafter [33]. The protease–antipro-
tease imbalance in CF airways is probably not due to an
intrinsic CFTR-associated lack of antiproteases since CF
patients exhibit normal serum and bronchoalveolar levels of
antiproteases [33].

Among the variety of proteases released by disrupted
neutrophils, human leukocyte elastase (HLE) is considered
the major factor causing harm to the surrounding pulmonary
microenvironment [37]. The scanty data available demonstrate
that the vast majority of the elastinolytic activity in CF sputum
can be attributed to the neutrophil-derived HLE, when
assessed in terms of micrograms of elastin degraded per
millilitre of solution per minute. Accordingly, HLE was
responsible for 90% of the activity, protease 3 for 7% and
soluble mediators released from macrophages, along with
P. aeruginosa-derived proteases, made up 3% [38]. Nevertheless,
it is very difficult to compare the various proteolytic activities of
different neutrophil-derived enzymes directly, since the rele-
vance of the target structures and different microcompartments
within the airspaces are unknown. Free HLE degrades several
extracellular matrix components, such as elastin, collagen,
proteoglycans, fibronectin and other proteins, thereby causing
pulmonary tissue destruction [31, 39–43]. In addition, HLE is
capable of inactivating the antiprotease tissue inhibitor of
metalloproteases (TIMP) and elafin [44], which, in turn, amplify
overall proteolytic activity in situ. For a more extensive
discussion of HLE functions, reference should be made to
previously published reviews [45–48].

With ongoing CF lung disease, a prolonged endobronchial
protease activity (PEPA) is established. This term has been
chosen since, in contrast to acute lung disease, in which a
temporarily increased extracellular protease activity can also
be observed, the protease–antiprotease imbalance in CF is
sustained for an ongoing period of time, and thus is prolonged.
PEPA has been documented very early in CF airways by
means of BAL in children with CF diagnosed by neonatal
screening and regular follow-up [15, 49]. These studies
suggested a close relationship between inflammation and
infection. However, the causative sequence between pulmon-
ary infection and airway inflammation is still incompletely

TABLE 1 Outcome measures of clinical trials in cystic
fibrosis lung disease

Phase# [Ref.]"

I II III

Quality of life ++ +++ [10]

Frequency of pulmonary

exacerbations

++ +++ [11]

Infant and toddler lung function,

including LCI

+++ [12]

Chest CT +++ +++ [13]

Aerosol deposition +++ ++ [14]

Bronchoalveolar lavage

fluid analysis

+++ ++ [15]

Sputum analysis ++ ++ [16]

Symptom score +++ +++ +++ [17]

Lung function (spirometry) +++ +++ +++ [18]

Sputum microbiology +++ +++ +++ [19]

LCI: lung clearance index; CT: computed tomography. ++: moderate; +++:

optimal. #: scale (++ or +++) indicates degree to which outcome measure is

suited to clinical trial phase; ": study in which the outcome measure has been

implemented.
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understood. In particular, the longitudinal course of PEPA, as
well as the effect of antibiotic or nonantibiotic treatments on
PEPA, are yet to be characterised.

PEPA INACTIVATES SOLUBLE AND CELLULAR
COMPONENTS OF THE PULMONARY IMMUNE SYSTEM
Apart from the issues that remain unclear, there is a broad
consensus that PEPA causes harm to various structural,
cellular and soluble components of the lung [50]. In the
following sections, attention is drawn to the mechanisms by
which PEPA inactivates the pulmonary host defence and
thereby permits pathogens to colonise CF airways. In order to
provide an overview of the proteins targeted by HLE activity,
they have been divided into the soluble and cellular targets of
the pulmonary immune system, and are summarised and
discussed below.

Soluble immune targets
HLE has been found to affect a variety of soluble components
of the pulmonary immune response (fig. 1a–d). In particular,
the complement opsonic C3 fragment iC3b is cleaved on the
surface of bacteria by HLE [51]. HLE has the capacity to cleave
immunoglobulins, resulting in Fc and Fab fragments and
leading to a decrease in both phagocytosis and killing of
P. aeruginosa [52]. HLE has also been shown to degrade
surfactant protein (SP)-A and -D, which impairs the innate host
defence of the bronchoalveolar space [53–56]. HLE causes
further changes in the host defence response seen in CF by
cleaving and inactivating bacterial flagellin [57], and also by
degradation and inactivation of annexin I, a calcium-depen-
dent phospholipid-binding protein thought to have anti-
inflammatory properties [58]. In addition, HLE seems to be a
potent proenzyme activator and inducer of gene expression of
matrix metalloprotease (MMP)-2 and cathepsins [59, 60]. The
upregulation of MMP-2 activity may then lead to cleavage and
inactivation of further key immune proteins, such as b-
defensins and lactoferrin. HLE was found to be an activator
of MMP-9 [61] and an inactivator of the MMP inhibitor TIMP-1
[44], resulting in an imbalance in MMP and TIMP. Recently,
these findings have been confirmed at concentrations of HLE
demonstrated in CF lung disease [62, 63]. The increased
activation of MMP-9 in CF lung disease has many possible
downstream inflammatory effects, including activation of
latent transforming growth factor (TGF)-b) [64] and the
possible liberation of collagen fragments chemotactic for
neutrophils [65]. HLE may also contribute to the perpetuation
of lung inflammation by degrading complement and releasing
C5a, a potent chemoattractant for neutrophils, and by increas-
ing airway serous cell mucus production [66, 67].

Cellular targets
The main cellular targets of PEPA are shown in figure 1e–h.
Phagocytosis of apoptotic neutrophils results in increased
production of TGF-b, which, in turn, reduces the production of
pro-inflammatory cytokines by neutrophils. Alveolar macro-
phages remove apoptotic neutrophils from the respiratory tract
via phosphatidylserine receptor (PSR/CD36), thereby facilitat-
ing the resolution of inflammatory processes [68, 69]. Free HLE
has been found to cleave PSRs from alveolar macrophages,
which impairs the clearance of apoptotic cells [70]. As a result,
the HLE-mediated impairment of phagocytosis results in

decreased production of TGF-b and amplification of pro-
inflammatory responses [71]. Furthermore, HLE was found to
induce IL-8 production by bronchial epithelial cells and LTB4

expression in macrophages [72, 73]. The induction of IL-8
expression was found to be mediated via an IL-1 receptor-
associated kinase 1/myeloid differentiation factor (MyD)88)/
nuclear factor-c-dependent pathway, suggesting the involve-
ment of Toll-like receptors (TLRs) [72]. Moreover, HLE cleaves
complement receptor (CR)1 [51, 74], tumour necrosis factor
receptor (TNFR)II [75], CD43 [76], CD16 (low-affinity immu-
noglobulin G receptor (FccRIII)) [76] and, as demonstrated
recently, the high-affinity IL-8 receptor CXC chemokine
receptor (CXCR) 1 [77] on the neutrophil surface. By means
of these mechanisms, HLE disables bacterial killing (CXCR1),
phagocytosis (CR1 and CD16), adhesion (TNFRII) and spread-
ing/aggregation (CD43) of neutrophils. With respect to
adaptive immunity, HLE cleaves CD4 and CD8 on T-cells,
which reduces the cytotoxicity and cytokine production by T-
cells [78]. HLE was also found to cleave CD14 on fibroblasts
and monocytes, resulting in decreased responsiveness to
lipopolysaccharide [79, 80].

Taken together, unopposed HLE is able to undermine several
key components of the innate and adaptive pulmonary
immune response, which, in combination, results in impair-
ment of pulmonary host defence in CF airways. In particular,
impairment of the complement system [51, 74] and IL-8/
CXCR1-mediated neutrophil functions [77] may be of major
relevance since both mechanisms were found to be operative in
vitro, as well as in humans with CF lung disease in vivo. BERGER

et al. [74] showed that neutrophils upregulate both CR1 and
CR3 upon activation with N-formyl-methionyl-leucyl-pheny-
lalanine (f-MLP). BALF neutrophils isolated from CF patients
showed increased CR3 expression, similar to f-MLP-stimulated
blood cells, but CR1 was decreased on BALF neutrophils
compared to the f-MLP-stimulated blood cells. The loss of CR1
on CF BALF cells could be reproduced by treating isolated
neutrophils with HLE, whereas CR3 was resistant to HLE. In a
subsequent study, the same group demonstrated that the
complement fragment iC3b on the surface of opsonised
bacteria is cleaved by proteolytic activity and that this
mechanism is operative ex vivo [51]. Taken together, the loss
of opsonins on bacteria, as well as cleavage of CR1 on airway
neutrophils, results in a local pulmonary opsonin–receptor
mismatch that impairs phagocytosis of bacterial pathogens in
CF lung disease [81].

It was recently found that, besides the elastase-mediated
impairment of the complement system, IL-8-mediated neutro-
phil functions are also disabled in CF lung disease [77]. IL-8
mediates its functions via two receptors, CXCR1 and CXCR2
[82]. It was demonstrated that CXCR1 but not CXCR2 conveys
oxidative and nonoxidative antibacterial neutrophil functions
[77]. However, CXCR1 is cleaved in CF airways, which impairs
the stimulating effect of IL-8 on bacterial killing by airway
neutrophils. Soluble cleaved CXCR1 fragments were further
found to stimulate IL-8 production in bronchial epithelial cells,
mediated via a TLR2/MyD88 pathway. Inhibition of proteases
by inhalation of a1-antitrypsin (a1-AT) in vivo largely pre-
vented CXCR1 and CR1 cleavage and improved bacterial
clearance in CF patients in vivo.
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When viewed in combination, the cleavage of CR1 and iC3b, as
well as CXCR1, impairs both complement-mediated phagocy-
tosis and the direct antibacterial functions of neutrophils, and
may act synergistically to disarm the innate immune response
in CF airways in vivo.

ASSESSMENT OF PEPA
Since the protease–antiprotease system is complex and
involves several interdependencies with nonprotease factors,
the present review focuses primarily on HLE and its natural
inhibitor a1-AT. Most commonly, HLE is measured using a
chromogenic activity assay that is standardised and sensitive
[83]. The amount of a1-AT present is determined by immuno-
detection, either by ELISA or via immunoprecipitation. a1-AT
can be inactivated by oxidation and binding to HLE. Therefore,
in addition to the amount of a1-AT that is bound to HLE in
complexes, its functional capacity to neutralise HLE can also be
assessed. Since preanalytical issues, such as sample type,
sample preparation and further processing, are critical to the
accurate assessment of PEPA, they are addressed in the
following sections. In particular, the use of BAL and sputum
are compared, and the shortcomings and pitfalls of each
method are discussed below.

Bronchoalveolar lavage
Bronchoscopy with BAL can be performed in patients of all age
groups (infants and children requiring general anaesthesia or
deep sedation), and localised areas within the lungs can be
precisely targeted [84]. Depending upon the volume of lavage
fluid instilled, either more proximal (e.g. 1 mL?kg body
weight-1) or more distal areas (e.g. 2–4 mL?kg body weight-1)
are reached. However, it is an invasive procedure. The rate of
adverse events, mostly fever or localised infiltration, might
increase with the volumes instilled and the severity of the
underlying lung disease. A further consideration when
assessing the overall proteolytic condition of the airways of
CF patients is that CF lung disease is typically more
pronounced in the bronchi and bronchioles, whereas BAL
samples both bronchial and alveolar compartments.

The BALF recovered should be freed of mucus by filtration,
followed by the separation of cells from a cell-free supernatant
by centrifugation. The supernatant is routinely used for assay
of HLE activity. The normal range of HLE activity expected in
human volunteers (but not in children) has been determined
(discussed further later). None or only minor free elastolytic
activity is normally detectable in healthy individuals, whereas
anti-elastolytic reserve (a1-AT) is physiologically present.
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FIGURE 1. Effects of free neutrophil elastase (red) on: a–d) soluble; and e–h) cellular components of the pulmonary immune system. a) Elastase cleaves

immunoglobulin (Ig)G, resulting in shed Fc and Fab fragments. It: b) cleaves iC3b on opsonised bacteria; and c) degrades surfactant proteins (SP)-A and -D, thereby

impairing the innate host defence in the bronchoalveolar space. d) Elastase processes granulocyte colony-stimulating factor (G-CSF), tissue inhibitor of metalloproteinase

(TIMP) and interleukin (IL)-8. These events lead to an inhibition of growth processes (G-CSF), increased activity of matrix metallproteases and a more active form of IL-8 as

chemoattractant on neutrophils. e) Elastase cleaves phosphatidylserine receptors (PSRs) from alveolar macrophages, thereby impairing the clearance of apoptotic cells from

the bronchoalveolar space. f) It cleaves complement receptor (CR)1, CD16, tumour necrosis factor receptor (TNFR)II, CXC chemokine receptor (CXCR)1 and CD43 on the

neutrophil surface, thereby disabling the bacterial phagocytosis (CR1, CD16), killing capacity (CXCR1), adhesion (TNFRII) and aggregation (CD43) of neutrophils. g) Elastase

further cleaves CD4 and CD8 on T-cells, which reduces cytotoxicity and cytokine production. h) In bronchial epithelial cells (BECs), elastase, as well as cleaved soluble

CXCR1 fragments, induce IL-8 production mediated via Toll-like receptor (TLR) 2/4 and the common adapter protein, myeloid differentiation factor 88 (MyD88), thereby

amplifying the pro-inflammatory neutrophil influx into cystic fibrosis airways.
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Induced or spontaneous sputum
By inhalation of hypertonic agents, such as 6% sodium
chloride, sputum can be induced in almost every subject. The
technique of sputum induction is safe and now widely used as
a therapeutic and diagnostic option [16, 85, 86]; potential
broncho-obstruction induced by the procedure may be
alleviated by pretreatment with a bronchodilator. The recovery
of the sputum, however, depends heavily upon the coopera-
tion of the individual. The majority of young children aged
,6 yrs do not reliably spit out sputum that is induced in their
bronchial tree, but instead frequently swallow it. Therefore,
this technique was considered to be reliably used only in those
aged o6 yrs. However, a recent study reported the successful
application of sputum induction in CF children with a median
age of 3 yrs [87]. Despite further studies being required for the
assessment of practicability and safety in this young age group,
the latter study suggested that sputum induction can also be
applied in CF infants aged ,6 yrs.

Nevertheless, several limitations should be considered when
using sputum. First, induced sputum is thought to be more
variable than BALF, especially when using serial sampling,
since serial specimens may not sample the same region within
the lung. This is of particular relevance in CF lung disease
since CF inflammation seems to inhomogeneously affect
different pulmonary sites [88]. Secondly, sputum is a complex
network of material expelled from the lungs, and, as such, is
very difficult to separate into its original components without
influencing them. Usually sputum plugs are selected and
dissolved either with the help of chemicals (dithiothreitol,
DNase and other enzymes) or mechanically. When applying
this technique, it is possible that intracellular granule contents
from rupturing cells or cells trapped in the nets of plugs are
liberated. Furthermore, compounds may be bound to mucus or
other surfaces exposed during processing of the sample and
thus lost to analysis. Thus, preanalytical issues are critical to
the processing of sputum and should be evaluated and
optimised prior to clinical studies.

Normal values for induced sputum cellular counts and
composition have been established in both adults and children
[89, 90]. In CF patients, a limited number of studies have been
performed involving a broad range of CF subjects (discussed
further later). In particular, the assessment of induced sputum
has proven helpful in studying the effect of antibiotic treatment
[20–22, 86]. The value of induced sputum in studying more
subtle effects of anti-inflammatory therapies remains unclear
as no study of anti-inflammatory drugs published to date
using outcome measures obtained from induced sputum has
convincingly demonstrated an effect. Recently, MAYER-
HAMBLETT et al. [91] reported the findings of a meta-analysis
involving 269 CF patients from four US multicentric studies on
the association between expectorated sputum biomarkers and
lung function (FEV1). Among several biomarkers studied, HLE
levels correlated with FEV1 both cross-sectionally and long-
itudinally, whereas IL-8 and other putative biomarkers
showed no association with lung function in these patients,
suggesting HLE may be useful as a biomarker in CF lung
disease. In conclusion, both BALF and sputum are useful for
the study of proteolytic activity/PEPA in CF lung disease, but
the differences between the two techniques, especially with

regard to the patient’s age, sampling region and preanalytical
issues, should be considered.

CLINICAL SITUATIONS WITH DIFFERING PEPA
CF lung disease is variable and compartmentalised in space
and time, ranging from early lung disease without clinical
symptoms to progressive lung disease with destruction of lung
tissue and loss of pulmonary function. Given the broad range
of CF lung disease, appropriate patient stratification is a
prerequisite for clinical studies [23]. This section describes
different stages of CF lung disease, with their typical scenarios
and relevant implications of inhibition of HLE.

Early lung disease with no established chronic infection
and inflammation (clinically stable)
This group comprises young patients, who usually exhibit a
lung function within the normal range and show no clinical
symptoms outside their exacerbations. BALF studies revealed
that even CF infants aged 1 yr exhibit increased neutrophil
counts and HLE activity, depending upon the bacterial
pathogens in their BALF [92, 93]. Owing to the technical
difficulties of inducing sputum in this population [86], BAL is
required to study these patients over time. No long-term data
are available regarding these patients with respect to their HLE
status. Given the potential anti-inflammatory benefit of inhaled
HLE inhibitors [94], the examination of such a population is of
pivotal interest in examining whether or not HLE-directed
therapeutics are able to prevent the establishment of persistent
airway inflammation, improve clearance of pathogens within
the airways, and, finally, decrease progression to chronic
obstructive airways disease.

Later lung disease with localised destruction and
significant PEPA (clinically stable)
The lung function of these subjects may well be within the
normal range, although some compromise is likely, and chest
CT scans can clearly depict the extent and sites of localised
pulmonary destruction [95, 96]. With inappropriate resolution
of acute exacerbation, localised destructive and chronic lung
disease is established in certain areas of the lung. Induced
sputum obtained from subjects with this condition is likely to
represent a mixture of healthy areas within the lung and areas
of significant proteolytic activity and destruction. The later
sputum fractions more precisely represent BALF composition
[97]. The central question is whether treatment with inhaled
protease inhibitors is able to overcome the excessive proteo-
lysis in the area of localised destruction without adversely
affecting other pulmonary areas in which antiproteolytic
conditions pre-exist. In this context, the effect of inhaled a1-
AT in conserving the integrity of the lungs over time might be
of major importance in the microenvironment of localised
destruction. The use of mixed induced sputum (with collection
of material from the whole lung) is useful in the determination
of whether or not overall control of elastolytic activity can be
achieved. The analysis of sequential sputum fractions, con-
versely, may be helpful for resolution of the spatial distribution
within the lungs [97]. However, this approach has not yet been
used in studies of inhaled protease inhibitors and remains to
be established in future investigations.
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Late lung disease with general destruction and
inflammatory activity (clinically stable)
Patients with multilocalised lesions usually show a surplus of
HLE in their sputum. Such patients typically exhibit chronic
bacterial infection and reduced lung function. The degree of
free HLE activity depends upon the overall severity of the lung
disease. Previous studies of inhaled a1-AT in CF patients with
progressive lung disease [95, 98] demonstrated that the HLE
can be neutralised totally [98] or partially [95] depending upon
the dose inhaled, the deposition mode and the method of
obtaining airway fluids (BAL or sputum). Antiprotease use
may be reasonable in this patient population in order to
prevent further progression of pulmonary destruction.

Acute exacerbation
With acute disease exacerbation, protease activity is thought to
be increased in CF airways. However, owing to difficulties in
defining exacerbations precisely in CF, as well as study
logistics, well-designed clinical studies addressing the role of
proteases in CF exacerbations are still lacking [11, 99]. Thus the
following critical questions remain unanswered. 1) Does anti-
HLE treatment reduce the duration of exacerbations, extent of
damage, post-exacerbation sputum production and airway
hyperreactivity? 2) Has co-treatment with antibiotics an impact
upon the course of exacerbations? 3) Do antibiotics have an
additional effect on protease activity or soluble/cellular targets
of PEPA in CF airways, as demonstrated for colistin [100]?
Potential harmful effects, such as the expansion of bacterial
growth or enhancement of symptoms, should be observed very
closely in this context.

INHIBITION OF AIRWAY NEUTROPHIL ELASTASE
In order to inhibit excess HLE activity, there are currently three
classes of inhibitor available: 1) small synthetic chemical
compounds; 2) semi-synthetic inhibitors obtained by modifica-
tion of their natural counterparts; and 3) natural inhibitors of
HLE (table 2).

Synthetic inhibitors of neutrophil elastase
Since there is increasing evidence that HLE-mediated tissue
damage often occurs at the tight interface between neutrophil
and substrate, a1-AT might have difficulty in accessing this

area due to its large size (52 kDa) and negative charge [101].
This and other pharmacological and economic issues sug-
gested the development of synthetic and semi-synthetic serine
protease inhibitors (serpins), as summarised later. A large
number of synthetic chemical compounds have been synthe-
sised and partially tested for inhibition of HLE [102]. In theory,
these low-molecular weight inhibitors might be superior to a1-
AT on the basis of their size, resulting in better accessibility to
narrow proteolytic sites within the CF lung [103–105].
However, due to unexpected toxicity or further relevant issues,
none of the synthetic inhibitors have yet been introduced into
clinical practice. Both peptide (such as ICI 200355; ICI
Americas, Wilmington, DE, USA) and nonpeptide HLE
inhibitors (ONO-5046; Ono Pharmaceutical Co. Ltd, Osaka,
Japan) have been developed. Sivelestat, for instance, (ONO-
5046/Elaspol) is a reversible selective inhibitor of HLE, which
was initially launched in Japan. A phase 2 clinical study in
patients with acute lung injury was suspended due to
unfavourable effects of the compound. Midesteine (MR-889;
Medea Research, Milan, Italy) represents another reversible
low-affinity inhibitor of HLE, which was found to reduce
mucus viscosity due to its interaction with thiol groups. It
appears safe and is undergoing clinical evaluation for chronic
obstructive lung disease. Specifically for CF, DMP-777 has
been tested in phase 2 studies; however, its development was
discontinued by the company. All other developments are in
much earlier phases [106], and no results have yet been
published.

Semi-synthetic inhibitors
Semi-synthetic inhibitors are usually obtained by chemical
modification of natural human protease inhibitors. For
example, engineered protein inhibitor of human neutrophil
elastase (EPI-hNE-4) is derived from the Kunitz-type domain
of inter-a-inhibitor [107, 108], which is a natural inhibitor of
HLE normally present in plasma. EPI-hNE-4 is a 56-amino-
acid-long fragment with a very low equilibrium dissociation
constant of 4 pM for HLE, and has the advantage that it is
derived from humans and is resistant against proteolysis and
oxidation [107]. Studies in animals as well as using sputum
from CF children, revealed successful inhibition of HLE and a
decrease in neutrophil migration [109]. EPI-hNE-4 is currently
being tested in phase 2 studies in patients with CF. SUPG-032
represents a nonglycosylated recombinant modified human a1-
antichymotrypsin in which six reactive-site amino acids have
been replaced by those of a1-AT, and is active against HLE,
cathepsin G and protease 3. The hybrid compound also inhibits
superoxide generation by neutrophils. Unfortunately, its
further development was suspended. Finally, mention should
be made of a fusion protein containing both a1-AT and
secretory leukocyte protease inhibitor (SLPI) activity, the
current development status of which is unknown.

Natural inhibitors
Natural inhibitors of HLE comprise a1-AT, monocyte/neutro-
phil elastase inhibitor (MNEI) and serpins, such as SLPI and
elafin/pre-elafin. Studies with a1-AT are addressed separately
in the section below. SLPI, a 12-kDa highly-cationic hydro-
phobic nonglycosylated single-chain protein, is produced in
the central airways by serous glandular cells and in the lower
respiratory tract by Clara cells and goblet cells, and appears to

TABLE 2 Classes of inhibitor of human neutrophil elastase
(hNE)

Synthetic Semi-synthetic# Natural

Sivelestat EPI-hNE-4

(inter-a-inhibitor)

a1-antitrypsin

Midesteine SUPG-032

(a1-antichymotrypsin)

SLPI

SLAPI

(a1-antitrypsin and SLPI)

Pre-elafin

Monocyte/neutrophil

elastase inhibitor

EPI: engineered protein inhibitor; SLAPI: a1-antitrypsin–secretory leukocyte

protease inhibitor (SLPI) fusion protein. #: obtained by modification of the

natural mother compounds shown in parentheses.
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be an efficient inhibitor of HLE activity in the airways. SLPI
and a1-AT are regarded as the major defence proteins against
excessive HLE, providing 10–50% of the total HLE-inhibitory
capacity [110, 111]. Since the reactivity of SLPI differs from that
of a1-AT, both antiproteases may act complementarily in vivo.
MCELVANEY et al. [112] studied the effect of 1 week’s inhalation
of recombinant human SLPI (100 mg twice daily) in 16 adult
patients with CF. As assessed by BAL, the number of
neutrophils and levels of IL-8 were reduced and HLE activity
was decreased for .12 h. However, when only 50 mg were
used for 2 weeks, no such effects could be observed, clearly
showing dose dependency. Elafin, a 6-kDa peptide similar to
SLPI, is a specific elastase inhibitor, which is suggested to
contribute up to 20% of the anti-HLE capacity of the lung in
vivo [113, 114]. Both SLPI and elafin are upregulated by pro-
inflammatory cytokines in airway epithelial cells [115, 116], but
may act anti-inflammatorily since both were found to inhibit
nuclear factor-kB activity and IL-8 and monocyte chemoat-
tractant protein-1 production [117, 118]. To the best of the
present authors’ knowledge, pre-elafin and MNEI have not as
yet been studied in patients with CF. However, animal data
show a substantial reduction in P. aeruginosa counts in a mouse
model of chronic infection after treatment with MNEI for up to
7 days [119]. Further clinical studies using natural inhibitors of
HLE need to be conducted in CF patients in order to precisely
evaluate their potency, beneficial and harmful effects, and
usefulness in clinical settings.

Besides antiproteases, antibiotics were found to differentially
affect proteases. Macrolide antibiotics were found to show
HLE-inhibitory activity, whereas colistin increased HLE
activity in vitro [100, 120].

INHIBITION OF FREE ELASTASE BY INHALED a1-AT IN
PATIENTS WITH CF
a1-AT is a 52-kDa glycoprotein that is secreted mainly by
hepatocytes, alveolar macrophages and neutrophils and acts as
a potent serine protease inhibitor [121]. The interaction of a1-
AT with HLE results in a rapid and irreversible inactivation of
the protease. Serum concentrations in healthy individuals
range 20–60 mM. a1-AT, released by the liver, diffuses into the
lung. Although levels in the lung are lower (,2–7 mM), a1-AT
is considered to contribute .90% of the antiproteolytic
capacity present in the pulmonary compartment [122]. When
considering a1-AT as a therapeutic agent, the source may be
human serum or recombinant protein expressed in other
systems, such as micro-organisms or transgenic animals [123].
A commercial a1-AT preparation is available from pooled
human plasma (Prolastin; Talecris Biotherapeutics, Research
Triangle Park, NC, USA). Prolastin is well tolerated and
effective in vivo, but the purity of the preparation is only ,60%
[124]. Novel a1-AT replacement preparations, such as Zemaira
or Aralast, have shown equivalency with Prolastin in aug-
menting a1-AT serum and alveolar epithelial levels and
provide greater purity than conventional preparations
(Zemaira.Aralast.Prolastin) [124–126]. However, clinical
data on the use of these preparations in CF patients are
unavailable to date.

Intravenous a1-AT application was initially used in individuals
with a1-AT deficiency, has been reported to be safe and well
tolerated [127], and is currently recommended for individuals

with severe hereditary (PiZZ/null) a1-AT deficiency [128, 129].
However, in CF airways, the amount of free proteases present
is very high (mostly .10 mM and sometimes even up to
100 mM) and the affected sites in CF lungs may be barely
accessible to a1-AT. a1-AT administered via i.v. was considered
for treating CF patients. However, preliminary studies showed
that large doses and repetitive administration would be
required to achieve beneficial long-term effects [130].
Accordingly, aerosolised a1-AT has gained increasing attention
since: 1) the direct site of disease is targeted, with higher
pulmonary concentrations achieved; 2) systemic side-effects
are less probable; 3) smaller amounts of a1-AT are required;
and 4) no i.v. access is required.

Transgenic technology enables the high-volume production of
active recombinant proteins, which is cost-efficient compared
with purified human serum a1-AT. PPL Therapeutics (Roslin,
UK) have developed transgenic sheep that produce in their
milk human a1-AT that is almost identical to human-derived
a1-AT, with the exception of some of the side-chain sugars
[131]. Since recombinant a1-AT has a short half-life, i.v.
administration is precluded but aerosol administration is
feasible [132]. A pilot study in CF patients using recombinant
a1-AT derived from transgenic sheep showed no allergic
effects up to doses of 500 mg recombinant a1-AT?day-1 [133].
Nevertheless, use of recombinant a1-AT may have the problem
of antibody responses to traces of inhaled nonhuman proteins
and may lead to anaphylactic reactions [134].

Tables 3 and 4 summarise published studies using BAL
(table 3) and sputum (table 4) to assess the effect of inhaled
a1-AT in patients with CF lung disease.

A phase 1 study evaluated the biochemical effect of a1-AT
inhalation in CF patients and has provided important insight
into the potential effects of aerosolised a1-AT in CF lung
disease [98]. Twelve adult subjects with CF inhaled 100–
200 mg (1.5–3.0 mg?kg body weight-1) a1-AT twice daily for
1 week. The estimated efficacy of the nebuliser to deliver a1-
AT into the lungs was ,10–20%, resulting in pulmonary
deposition of ,10–40 mg. Before inhalation, all subjects had
their BALF HLE activity measured. If the epithelial lining fluid
concentration of a1-AT was increased to a level of .8 mM, all
free HLE was blocked. Interestingly, post-treatment BALF did
not inhibit neutrophil killing of P. aeruginosa in vitro, as was
found using pretreatment BALF, suggesting that HLE effi-
ciently impairs antibacterial neutrophil functions in vivo. This
study in CF patients with an FEV1 of .60% of the predicted
value clearly demonstrated free HLE in the alveolar compart-
ment, which was neutralised dose-dependently and reached
free anti-HLE capacity in some cases. In another smaller study,
treatment with a1-AT in the lower dose range led to reduced
levels of total protein, numbers and amounts of proteins with a
molecular weight of ,20 kDa, and degradation products of
SP-A [137]. In the latter study, no effect of a1-AT on surfactant
convertase, an alveolar enzyme hypothesised to be inhibited
by serine protease inhibitors, was noted [138]. In healthy
adults, the a1-AT half-life is 69.2 h and the half-life of anti-
elastolytic capacity is 53.2 h, suggesting that once daily dosing
may be appropriate. However, the functional half-life under
specific conditions, such as CF, may be different and remains
to be determined.
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In the only randomised placebo-controlled CF trial using
induced sputum to assess the effect of different doses of
inhaled a1-AT (125, 250 and 500 mg), levels of myeloperox-
idase, a surrogate for neutrophil activity, were reduced after
a1-AT treatment, but only in the group receiving the highest
dosage of a1-AT (500 mg) [133]. Similarly, levels of taurine,
also a surrogate for neutrophils, were marginally reduced
[139]. In line with this finding, it was found that the number of
neutrophils, as well as pro-inflammatory cytokine levels, was
reduced after a1-AT inhalation [94]. Interestingly, in these
studies, the HLE activity of sputum was not [133, 139], or was
only partially [94], reduced. Another study involving 22 adult
CF patients was published in abstract form only by BERGER et
al. [136], showing a decrease in HLE levels but no changes in
IL-8 levels and numbers of neutrophils upon aerosolised a1-AT
treatment. What are the reasons for this discrepancy between
sputum and BAL a1-AT studies? First, sputum and BAL
sample different areas of the lungs. The more peripheral region
sampled by BAL is expected to exhibit lower inflammatory
activity and bacterial load [84]. CF lung disease is almost
completely excluded from the alveolar space, and, even in
severely damaged explanted lungs obtained after lung
transplantation, only few inflammatory cells are observed in
the alveoli [140]. Secondly, during preparation of BALF
supernatant, the mucus recovered by lavage, containing
trapped leukocytes and other elements attached to it, is often
removed during filtration. In contrast, during preparation of
sputum, cellular debris and apoptotic leukocytes may be
included in the analysis. Finally, the different methods used to
obtain sputum supernatant should be considered. When a sol
phase is prepared, undetermined intra- and extracellular
components can be released into the supernatant. This cannot
be readily compared to a cell-free supernatant prepared by
mechanical, enzymatic or biochemical means.

In an attempt to define the optimal regions within the lungs of
CF patients for delivery of a1-AT, preferential peripheral
(alveolar) deposition was compared to more central (bronchial)
deposition [94]. No differences in any outcome parameter were
found between the two deposition methods. In combining both
of these groups, the previously mentioned study showed that
inhalation of a1-AT increased a1-AT levels and decreased
levels of HLE activity, percentages of neutrophils, levels of
pro-inflammatory cytokines and colony counts of P. aeruginosa.
Lung function was not affected by a1-AT inhalation, which
may be due to the relatively short treatment period.
Drawbacks of antiprotease therapy are that aerosolised
antiproteases, as with most other drugs, can barely be
deposited in the poorly ventilated areas of the lung that need
treatment most. In addition, the pharmacokinetic and dynamic
characteristics of a complex environment such as the CF lung
are hard to establish. Thus, the challenge remains to efficiently
deposit a1-AT at the site of CF lung disease. It is, therefore,
critical that the delivery system is optimised for maximal drug
delivery over a brief period of time with minimal aerosol loss.
This can be achieved by combining an efficient nebuliser,
which generates the aerosol, with a device that guarantees an
optimised breathing pattern. The AKITA (electronically regu-
lated device for the controlled inhalation of therapeutic
aerosols) device, programmed for the individual breathing
pattern using a smart card, represents such a system. Using
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this approach, ,85% of the aerosol can be delivered into the
lungs [94]. This device is superior for the targeting and
delivery of even relatively large amounts of aerosols into the
lungs compared to previous systems. Automatic monitoring of
compliance helps to define adherence to treatment.

IMPLICATIONS FOR CLINICAL TRIALS
Given the numerous targets of PEPA in CF lung disease, many
potential outcome variables for clinical phase 1 and 2a studies
of antiproteolytic treatment can be envisioned. These
approaches will permit greater insight into the pathophysiol-
ogy of CF lung disease. For future clinical studies of HLE
inhibition in CF patients, however, it is important that the
relevant target populations are clearly defined and stratified.
Success in these trials will only be achieved by: 1) selection of
representative study populations, 2) well-designed primary
and secondary outcome parameters, 3) thoroughly charac-
terised protocols for sample preparation, and 4) on-site
training for compliance with these procedures. Finally, batch
analysis of all variables for which storage is possible in an
experienced central laboratory is essential. For phase 2b and 3
studies, outcome variables such as FEV1 and rate and time to
exacerbation are appropriate; additional analysis of surrogate
markers, e.g. cytokine analyses, in a study subcentre can be
helpful in the interpretation of the results. Large studies of
inhaled a1-AT or other protease inhibitors are essential to the
systemic evaluation of the effect of HLE inhibition as a
therapeutic approach in CF lung disease.

SUMMARY
Inhibition of airway neutrophil elastase represents a causative
approach to limiting the self-destructive process of neutrophil-
derived protease activity in cystic fibrosis lung disease. Despite
several attempts designed to achieve this goal, clinically useful

concepts have only just started to evolve. a1-Antitrypsin, the
natural inhibitor of free elastase, has been employed in a few
clinical studies and has yielded promising, but not yet
convincing, results. Representative study populations, elabo-
rated protocols for sample preparation, methodological accu-
racy and relevant end-points are warranted in order to further
validate the usefulness of elastase inhibition in cystic fibrosis
lung disease.
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