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Ventilator-associated lung injury: a search
for better therapeutic targets

R.A. Oeckler and R.D. Hubmayr

ABSTRACT: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a
continuum of injury that may arise from a number of primary insults.

Localised injury may progress due to trauma from mechanical ventilation, a finding that has led
to intense debate in the clinical and experimental literature over optimal ventilator management.
The implementation of low tidal volume strategies has led to an improvement in outcomes;
however, mortality remains unacceptably high.

In the current review, ventilator-associated lung injury is examined, as it relates to the
pathophysiological changes beyond direct airway trauma in ALI and ARDS, and an attempt is
made to provide a historical perspective to outline potential current and future pitfalls in the use of
surrogate end-points and the discovery of potential biomarkers. The systemic responses that lead
to multi-organ dysfunction, the leading causes of morbidity and mortality in ALI and ARDS, are
caused by pro-inflammatory signalling cascades and the activation of such diverse mediators as
reactive oxygen species, immune response elements, apoptotic constituents and coagulation
proteins.

These areas are examined, including key mediators, and possible future areas of interest are
discussed, including the potential of an “acute lung injury chip” to integrate measured surrogate
biomarkers with real-time clinical information to improve patient outcomes.

KEYWORDS: Acute lung injury, acute respiratory distress syndrome, biomarker, mechanisms,
treatment, ventilator-associated lung injury

he development and large-scale imple- In order to provide an outline of past research
mentation of mechanical ventilation in and where current and future research is going, a
rationale for past, present and future therapeutic

the late 1950s and early 1960s was a

dramatic step forward in the management of
patients with acute respiratory failure. The use of
mechanical ventilation in this era drove new
insights into respiratory physiology and bio-
mechanics, ultimately leading to the recognition
of the acute respiratory distress syndrome
(ARDS). Advances in monitoring, imaging and
medical informatics have further shaped the
evolution of critical care medicine into a specialty
with a distinct body of knowledge. The applica-
tion of evidence-based medicine to critical care
has, in turn, confirmed several hypotheses that
had originated in physiology and basic science
laboratories. The topic of one such hypothesis,
ventilator-associated lung injury (VALI), is the
focus of the present review article.

For editorial comments see page 1041.
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end-points will be examined. The paradigm shift
from a blood gas tension-driven approach to a
mechano-protective one is an informative exam-
ple of how research has shaped clinical practice.
In providing the current review article, the
authors hope to take an educated guess at future
paradigm shifts.

DEFINITIONS AND HISTORICAL
PERSPECTIVE

ARDS was first described as the adult respiratory
distress syndrome by ASHBAUGH et al. [1] in 1967,
to differentiate it from immaturity and infant
respiratory distress [2]. ARDS was reminiscent of
a “shock lung” syndrome with pulmonary
oedema and hypoxaemia. It was reported follow-
ing trauma and sepsis, mostly in surgical patients,
from both military and civilian hospitals [3-7]. It
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was later determined that ARDS may afflict individuals of all
ages, including infants and newborns, and this eventually led to
a name change to acute respiratory distress syndrome.

To gain a better understanding of the epidemiology of the
syndrome and to stimulate research in ARDS-related disease
mechanisms, the American-European Consensus Conference
Committee [8] released a statement in 1994 detailing the
specific diagnostic criteria detailed in table 1.

BAROTRAUMA AND VOLUTRAUMA

Since the initial description of ARDS coincided with the
introduction of blood gas analysers into the critical care
practice, correction of abnormal arterial blood gas tensions
quickly emerged as the primary goal of ventilator manage-
ment. This led to the appreciation that the application of
positive end expiratory pressure (PEEP) and larger than
normal tidal volumes (VT) were effective means of improving
pulmonary gas exchange. Moreover, by increasing volume and
gas content, PEEP and high tidal ventilation became associated
with improved lung radiological appearance, implying clinical
benefit. Since the perils of oxygen toxicity had been well
established in newborns, treatment strategies to improve
oxygenation by mechanical means as opposed to oxygen
supplementation were reinforced. Ventilation with large VT
and airway pressures was often necessary to prevent hyper-
capnia, whereby it was readily appreciated that normalising
gas exchange by mechanical means came at a price, namely a
high incidence of barotrauma. Barotrauma, defined as extra-
alveolar air, was largely attributed to PEEP and found to be a
weakening of the lungs’ connective tissue network by the
intrinsic disease process.

While reports on the detrimental effects of mechanical
hyperinflation on the lungs’ barrier properties have been
found as early as 1963 [9], this problem was not appreciated by
the critical care community at the time. In the absence of chest
computed tomography, which did not enter clinical practice
until the mid 1970s, physicians were not aware of the regional
nature of lung injury and labelled ARDS lungs as “stiff”’, as
opposed to functionally small (the baby lung concept [10]).
Therefore, the data that ultimately fuelled the paradigm shift
in ventilator management away from blood gas-targeted
therapy to lung protection were either not yet available or
were not appreciated.

By imaging the lungs of patients with ARDS with computed
tomography, a series of papers by GATTINONI and co-workers
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[10-13] established that injured lungs had heterogenous
mechanical properties and that the number of alveoli capable
of expanding during a breath was substantially reduced.
Accordingly, GATTINONI and co-workers [10-13] considered it
more appropriate to think of the ARDS lung as a small baby
lung rather than a large stiff lung. As a student, Gattinoni had
been exposed to the idea of lung protection and thus
recognised that the ““baby lung” might be at risk for injury
by hyperinflation unless it was “rested”. This motivated
Gattinoni to examine the efficacy of extracorporeal gas
exchange support systems, such as extracorporeal membrane
oxygenation (ECMO) [11] and extracorporeal carbon dioxide
removal [12, 13]. ECMO had been tested in the USA in the
early 1970s as an alternative to conventional mechanical
ventilation, but the 90% mortality outcome was disappointing
to say the least [14-16]. The original USA ECMO trial had
suffered from serious design flaws (in hindsight, the lungs of
ECMO patients had been ventilated at injurious settings),
justifying a ““second look” by Gattinoni’s group and leading to
yet another single-centre trial [11]. Unfortunately this second
ECMO trial also failed to establish a clinical benefit, and so, at
least in the adult population, VALI prevention via ECMO was
largely abandoned in the 1990s. Recent anecdotal successes in
the cardiovascular surgical arena, however, promise yet
another renaissance in ECMO research [17-20].

While the ECMO story was evolving in the mid 1980s,
DREYFUSS et al. [21] produced new data reminding the critical
care community that mechanical ventilation with large VT was
injurious, coining the term “volutrauma”. This terminology
proved useful as it emphasised that peak lung volume and VT
are better surrogates of lung stress than peak airway pressure,
plateau airway pressure and airway pressure swings. It also set
the stage for influential clinical trials, which ultimately
established that mechanical ventilation with VT of 12 mL-kg™
predicted body weight generated morbidity and mortality in
patients with ARDS and acute lung injury (ALI) [22, 23]. These
trials did not, however, establish a universally accepted guide
to best ventilator practice [24, 25]. There remains controversy
about the merits of the open lung strategy, recruitment
manoeuvres and best PEEP, and about the relative importance
of targeting plateau airway pressure and compliance as
opposed to VT to achieve optimal patient outcomes.

These controversies persist because airway pressure, blood gas
tensions and regional lung air content are seductive surrogate
treatment targets due to their ease of measurement, rapid

7:\:]H=S 8 Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) criteria

American-European Consensus Conference Committee diagnostic criteria of ALI/ARDS

Acute onset
Bilateral infiltrates on chest radiograph

Pulmonary artery wedge pressure <18 mmHg by pulmonary artery catheterisation (or lack of clinical evidence of left ventricular failure)

Pa,0,/F1,0, ratio
<300 mmHg — acute lung injury
<200 mmHg — acute respiratory distress syndrome

Pa,0,: arterial oxygen tension; F1,0,: inspiratory oxygen fraction. 1 mmHg=0.133 kPa.
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response to a change in ventilator settings, and because the
physiological determinants of such a response are generally
understood. However, these attributes do not validate respira-
tory system mechanics or gas exchange as surrogates of clinical
efficacy, and transient observational time-points may con-
found conclusions. For example, in the “[Ketoconazole] and
Respiratory Management in the treatment of ALI and ARDS”
trial [22] patients receiving mechanical ventilation with large
VT had better oxygenation and a larger respiratory system
compliance 24 h after randomisation than patients randomised
to a low VT strategy. Nevertheless, the latter approach was
associated with improved survival. Controversies also persist
because experimental VALI models tend to be time limited and
may not recreate the complex interplay between disease
progression and treatment modality that shape lung remodel-
ling and repair responses in patients over days to weeks as
opposed to several hours.

BIOTRAUMA

While the controversies about optimal ventilator management
continued throughout the 1990s, work in the field of immunol-
ogy began to establish important associations between non-
infectious environmental stressors and innate immune
responses [26-31]. Previously relegated to roles in wound
healing and host defence against particulate matter and
infectious invaders, the view of the immune system evolved
towards that of a multifaceted mechanism acting as a sentry of
homeostasis. Inmune responses are able to incorporate, inter-
pret and integrate anatomical, physical and chemical input, and
it became increasingly clear that they could be modulated by
parallel pro- and anti-inflammatory signalling cascades acting
on local as well as systemic levels. The paradigm shift came with
the understanding that these processes, normally directed
towards defence and healing, could themselves be capable of
causing tissue injury and disease [32-36].

As research in biochemistry and immunology began to
uncover the mechanistic underpinnings of immune responses,
it became apparent that many mediators within the networks
of bioactive molecules could be influenced or altered by
deforming stress. The discovery of mechanosensors in
microbes, and the evolving field of mechanotransduction,
began to link certain facets of mechanical ventilation with
alterations in immunological responses. These underlying
processes are fundamental to the notion of VALI, and the
associated concept of “biotrauma”.

Biotrauma refers to an integrated pro-inflammatory host
response to mechanical ventilation. It is the biologist’'s term
for VALI insofar as biotrauma is shaped by mechanical
ventilation, but is not singularly caused by it. Biotrauma and
VALI are distinct from ventilator induced lung injury (VILI),
which describes a deliberate experimental insult to an
otherwise normal lung and which therefore is rarely seen in
the clinical arena. The importance of biotrauma is emphasised
by the loss of pulmonary containment of inflammation in
response to deforming stress. This accounts for the high
mortality of patients with lung injury and ARDS from multiple
organ dysfunction syndrome.

The mediators and biological expressions of biotrauma are

varied, involving reactive oxygen species (ROS), cellular growth
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and apoptotic pathways, coagulation cascades and diverse
immune response elements. As such, these mediators and
expression systems have become an attractive source of
potential biomarkers that complement or supplant more
established physiological variables as diagnostic markers,
predictors of outcome or surrogates of therapeutic efficacy. In
the following sections, the most promising candidate molecules
and biotrauma expression systems will be discussed.

NEUTROPHIL RECRUITMENT AND THE IMMUNE
RESPONSE

Neutrophil (polymorphonuclear leukocyte, PMN) recruitment
is an important regulator of inflammation associated with ALI
and ARDS. In the initial stages of ALI and VILI, there are very
few extravascular PMNs, and it is during this stage that the
release of cytokines and chemokines, largely derived from
epithelial cells and alveolar macrophages, promotes the
adhesion, aggregation and diapedesis of PMNs into the lung
interstitium. It is at this point that clinical and physiological
manifestations of lung injury become first apparent. It is not
surprising then, that the resolution of neutropenia is tem-
porally associated with worsening lung function in neutrope-
nic hosts [37]. Reports of ALI in neutropenic patients [38]
merely emphasise the complexity and redundancy of disease
mechanisms associated with lung injury.

For a PMN to traverse the small pulmonary capillaries, it must
undergo a considerable change in shape to squeeze through
the convoluted architecture of the microcirculation. This leads
to increased transit times, creating a “‘physiological sink” of
PMNs within the lung, even under normal conditions [39].
Therefore, a large pool of PMNs exists locally, and is available
at all times for recruitment if the proper triggers manifest
themselves. This anatomical and physical constraint is distinct
from the well-described immune processes of migration,
rolling and adhesion that occur in inflammatory states, such
as ALIL The former is a result of inalterable anatomical and
physical properties, while the latter is a dynamic process under
the direction of cytokines, chemokines and chemoattractants.

Animal models confirm that PMN recruitment occurs early in
ALI [39-41], and that it is mediated by immune mechanisms.
Injurious ventilation in mice causes PMN sequestration within
the lungs at a stage before alterations in mechanics and gas
exchange are detectable. In VILI models, sequestration was
independent of CD18 antibody, an inflammatory mediator of
leukocyte—endothelial cell interactions well characterised in the
response to lipopolysaccharide (LPS) [42]. The repeated collapse
and cyclic overdistension of alveoli associated with high tidal
ventilation is associated with the activation of key inflammatory
cascades. Studies in the perfused rabbit lung [43] demonstrated
that mechanical ventilation with fixed levels of PEEP resulted in
activation of nuclear factor (NF)-«B, activator protein-1 and the
cAMP-responsive element binding protein, all potent inducers
of downstream chemokine and cytokine release. However,
when PEEP was continually adjusted to maintain full end-
expiratory alveolar recruitment, less activation of these early
inflammatory signalling cascades was found. Similar findings
were recently reported in humans [44-47].

Cyclical collapse and overdistension of alveoli has also been
associated with a local change in endothelial permeability
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(a hallmark of both ALI and sepsis) and surfactant production
with consequent development of pulmonary oedema. The
process is compounded by the deposition of fibrin and a shift
towards a pro-coagulant state, a state that promotes hypoxia
and fibroproliferation [5]. Hypoxia can inhibit apoptosis of
quiescent PMNSs, enhances the cytotoxic function of PMNs [48],
and may therefore lie at the centre of a positive feedback loop
perpetuating injury. It would seem then that the PMN or its
regulatory pathways should be rife with measurable markers
and targets for diagnostics, prognostics and immuno- or
pharmacotherapy. Unfortunately, the plasticity of immuno-
regulatory networks that shape temporally and spatially distinct
manifestations of biotrauma remains poorly understood. As a
result, most ARDS biomarker studies have focused on a very
small number of molecules. Post hoc analyses suggest that
ventilator management decisions, which were subsequently
identified as harmful, were associated with increased levels of
cytokines and chemokines in circulation and bronchoalveolar
lavage fluid (BAL) [49-51]. However, to date, the utility of these
molecules in guiding management decisions has not been
established. Uncertainty about their cellular origin, kinetics and
their specific roles in shaping injury and repair responses are
some of the more apparent barriers to such an undertaking.

The most promising molecular candidates are likely to be at the
hubs of intersecting pathways and thereby affect more than one
molecular species. For example, increased levels of the
regulatory peptide adrenomedullin (ADM) are present in
patients with systemic inflammatory response. Studies in both
human and pig cell monolayers have demonstrated an ADM-
mediated barrier protective effect involving not one, but three
different effector mechanisms, as follows: ROS, thrombin and
Escherichia coli haemolysin-mediated inflammatory pathways
[52]. Importantly, the same study demonstrated that pharmaco-
logical pre-treatment with ADM blocked oedema formation in
isolated perfused rabbit lungs. The well known anti-inflamma-
tory and immunosuppressive agent propofol has also been
effective in pre-clinical studies [53]. Rabbits exposed to a rather
high dose of propofol (15 mg-kg™') prior to endotoxin exposure
demonstrated less PMN sequestration, and decreased capillary
permeability and pulmonary oedema. There does not appear to
be a class effect, as two increasingly common anti-inflammatory
and immunosuppressant compounds have been implicated in
the development of ALL Sirolimus [54], an anti-inflammatory
and anti-proliferative agent used most commonly in cardiac
stents, and rituximab [55], the anti-CD20 chemotherapy agent,
have both been associated with ALL

A detailed description of biomarkers of ALI is beyond the
scope of the present review; however, in order to provide a
flavour of the depth and diversity of this area of research, a
brief summary follows. High mobility group box 1, a
transcriptional regulator protein, previously implicated in late
endotoxin lethality, appears to be involved in toxic and
environmental chemical-induced ALI [56]. Toll-like receptor
4 signalling appears to regulate pro-inflammatory cytokines,
such as NF-xB, interleukin (IL)-1p and -6, induced by LPS in
mice [57]. The antioxidant flavonoid hesperidin has immuno-
modulatory properties, and in a murine model of LPS-induced
ARDS, successfully inhibited the expression of a number of
pro-inflammatory mediators, including IL-8, tumour necrosis
factor (TNF)-o, IL-1B, IL-6, IL-12, intercellular adhesion
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molecule-1 and vascular cellular adhesion molecule-1 [58].
Serum levels of heat shock protein (Hsp)60 correlate with the
development of ALI and are thought to reflect cell necrosis.
Hsp60 acts on immunocompetent cells to cause the release of
cytokines and nitric oxide, triggering a strong inflammatory
response within the lung [59]. Finally, the complementary
system is the mediator of the body’s humoral immunity, and
nearly half of its proteins are involved in regulation of the
pathway. Therefore, it is no wonder that the complementary
system remains an important area of current pharmaceutical
investigation, even though no probes of proteins involved in
pathway regulation are currently commercially available [60].

ALI often complicates sepsis and could be considered a
consequence of the associated cytokine storm [61].
Haemodialysis is effective in removing mediators, such as
IL-6, IL-8 and TNF-a [62-68]; however, to date, no study of
either haemodialysis or plasmapheresis has specifically tar-
geted ALI patients. Targeting of multiple agents would be of
interest because, as discussed previously, it is unlikely that the
modulation of any one mediator or pathway will be successful
in achieving better outcomes.

COAGULATION

Many studies [69-76] have established mechanistic interactions
between the coagulation cascade and the immune system. The
recent literature on sepsis [77-82] speculates about improved
outcomes in patients receiving anticoagulant therapy, regard-
less of whether it is in the form of heparin, activated protein C,
hirudin or leperudin. For example, mice with naturally
reduced factor VII production have an attenuated inflamma-
tory response and enhanced survival when exposed to
endotoxin [83]. Primates with sepsis-induced ALI that have
received therapy targeted at the intrinsic pathway demon-
strated protection from fibrin deposition, decreased markers of
inflammation and improved lung function [81].

Animal models further implicate abnormalities of fibrin turn-
over in the pathogenesis of acute inflammation and fibrotic
repair [69-71, 84-87]. As discussed earlier, the process of fibrin
deposition may be a means for the lung to localise or ““wall off”
inflammation, thereby limiting the risk of dissemination to
neighbouring lung regions and the systemic circulation [69].
Human alveolar epithelial type II (AT2) cells and immortalised
alveolar epithelial type I cells (A549) have the ability to
modulate protein C [69] and tissue factor expression [87], and
therefore are capable, along with PMNs, of influencing pro- and
anticoagulant activities within the alveolar space.

Several groups have examined the regulation of matrix
turnover and the diagnostic and prognostic significance of
coagulation factors in patients and experimental models of ALI
[74, 88-90]. Of these, a promising clinical marker is the
plasminogen activator inhibitor. In human studies, levels of
plasminogen activator inhibitor-1 were significantly higher in
ALI when compared with patients with hydrostatic oedema,
and the test identified those with ALI with a high sensitivity
and specificity [74].

REACTIVE OXYGEN SPECIES
Deforming stress promotes the generation of ROS, and ROS
signalling is likely to play an important role in the pathogenesis
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of hyperinflation injury. Unfortunately, many of the techniques
used to measure these unstable compounds cannot be employed
at the bedside. As such, questions of specificity, toxicity and
potential autogeneration of ROS by both detection agents,
including dihydroethidium, dichlorofluorescein and lucigenin
[91], and molecular probes have come into question. In addition,
variations in cell permeability, compartmentalisation, autoreac-
tivity and the presence of ROS scavenging systems (nitric oxide,
superoxide dismutase, catalase, glutathione, thiols) and chelat-
ing agents (Ca2+, Cu, EDTA, EGTA) all add complexities that
may explain conflicting results in the literature [92].

An example is nitric oxide, a molecule likened to a double-
edged sword based on observations in both experimental
animal models and human clinical trials. One explanation for
this likeness may be dose- or species-specific responses to
nitric oxide. In a murine ALI model, overexpression of
endothelial nitric oxide synthase was associated with a
reduction in lung injury [93], yet the opposite was observed
in rats [94]. Here microvascular leakage was used as a
surrogate of ALI, and rats ventilated with high VT
(20 mL-kg™") had an upregulation of endothelial nitric oxide
synthase that correlated directly with microvascular leakage in
an N%nitro-L-arginine methyl ester-dependent fashion.

Clinical trials taking place as early as 1993 indicated that
inhaled nitric oxide could improve oxygenation in ALI [95],
and concerns about toxicity drove studies to optimise delivery
of the gas to the part-per-billion range [96, 97]. At these low
concentrations, nitric oxide was found to improve arterial
oxygen tension in most patients independent of pulmonary
vascular resistance [98] and appears to be protective of the
pulmonary vascular endothelium [98]. At higher concentra-
tions, however, nitric oxide scavenging by ROS begins to yield
reactive nitrogen species and other intermediates, such as
peroxynitrite, that are capable of altering cellular respiration,
enhancing ROS production, lipid peroxidation, endothelial
injury and loss of barrier function [98, 99].

The mechanism of ROS-mediated increases in endothelial
permeability remains unclear, and even the sources of ROS
within the lung under physiological and pathological condi-
tions remain controversial. The mitochondria, xanthine oxid-
ase and NAD(P)H oxidase have all been implicated as
important sources for stretch-dependent endogenous produc-
tion of superoxide. In rat AT2 cells and immortalised human
airway epithelial cells (A549), cyclic mechanical strain
increases ROS production in a dose-dependent manner once
a critical threshold is reached [100], and the same has been seen
in bovine pulmonary arteries [101]. A number of targets for
ROS-induced permeability changes have been suggested, and
include vascular endothelial growth factor (VEGF), endothelial
growth factor and subsets of the mitogen-activated protein
kinase cascades [102], yet the actual effector mechanisms
downstream remain elusive.

Pharmacological interventions in animal models of ALI aimed
at modulating ROS levels have been met with mixed results.
For example, the NAD(P)H oxidase inhibitor apocynin
attenuated sepsis-induced lung injury, as well as neutrophil
ROS generation in both guinea pigs and human umbilical vein
endothelial cells [103], and polyethylene glycol-conjugated
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superoxide dismutase attenuated lung injury in E. coli-treated
guinea pigs [104]. In a mouse model of ALI, administration of
N-acetylcysteine 1 h after endotoxin challenge prevented the
impairment of hypoxic pulmonary vasoconstriction and
attenuated sepsis-associated ALI [105]. The administration of
methylprednisone in isolated perfused rat lungs attenuated
ROS-induced vasoconstriction and bronchoconstriction [106].

There have been few clinical trials targeting ROS generation,
and none suggesting benefit. Issues include toxicity and
efficacy, and neither of the probes can be used in humans; in
addition, as in the case of N-acetylcysteine or nitric oxide, the
results of encouraging pre-clinical trials could not be repro-
duced in the clinical arena. This reinforces the notion that a
single component in an integrated system is rarely the lynchpin
of a complex mechanism. An alternative approach may be to
compile datasets of key markers to either prognosticate or track
disease development and progression [107].

APOPTOSIS

The fundamental question about the role of apoptosis in the
pathogenesis of VALI is whether the process is good or bad.
The answer is clear: “it depends”. Context is important in
many mechanisms of ALI, but it would seem none are more
important than in apoptosis. Apoptosis is a sine qua non of
tissue remodelling and repair. To use the somewhat antiquated
metaphor of apoptosis as “programmed cell death,” one can
easily appreciate the wisdom of terminating the exudative
phase of inflammation by ““programming’ the destruction of
PMNs or alveolar macrophages, for example, after invading
pathogens have been removed. Conversely, the unintended
programming of the destruction of alveolar epithelial cells
would create alveolar wounds and could trigger fibro-
proliferation. It is therefore not surprising that the investigation
of molecular targets deemed to be important pro- or anti-
apoptotic regulators continues in earnest. An example is TNF-a,
a pro-inflammatory cytokine whose levels are consistently
elevated in the BAL fluid of ALI patients. It has been shown
to have a biphasic effect on the rate of PMN apoptosis, with
long-term suppression being mediated through the anti-
apoptotic chemokine IL-8 [108]. Furthermore, TNF-o has been
implicated in endothelial cell apoptosis and consequent barrier
dysfunction, leading to hyperpermeability [109]. Initially, the
molecule was thought to be a key inciting factor for oedema
formation, but it now appears that the initial phase of lung
injury is independent of TNF-o, macrophage-inflammatory
protein-2 or IL-6 [110], even though there is an association
between barrier dysfunction and apoptosis [111].

Beyond apoptosis, TNF-a has been shown to attenuate multiple
ALl-related processes, from the activated protein C-mediated
intra-alveolar fibrin deposition by alveolar epithelial cells [69] to
the induction of intercellular adhesion molecule-1 surface
expression [112]. The latter entails mechanisms dependent on
protein kinase C and intracellular ROS, re-emphasising the
complexity and redundancy of the systems involved in the
pathogenesis of ALL To this complexity must be added
the further nuances of timing, cell (or tissue) type, and the
concurrent conditions of the local milieu. This added contextual
layer alters the roles of certain key mediators, influencing their
interactions depending on the pre-set condition.
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The biological effects of TNF-o have been emphasised for the
sake of a representative example; similar observations have
been made concerning NF-kB, proteinase activated receptor-1,
peroxisome proliferator-activated receptor-y and haem oxygen-
ase. All have been shown experimentally to influence apoptosis
rates, but none have had an effect on survival in animal models
[113-120]. Parallel work in human alveolar macrophages further
delineates the context of environmental conditions. Targeting
specific mediators did not affect spontaneous apoptosis rates
under physiological conditions, yet in LPS-induced apoptosis,
the macrophage-activating cytokine interferon-y enhanced
apoptosis, while macrophage-deactivating cytokines IL-4, IL-10
and transforming growth factor-B became anti-apoptotic med-
iators [121].

Again, the question of a useful ALI biomarker arises. Have the
advances in apoptosis-related assays reached a level that might
provide a potentially inexpensive, noninvasive diagnostic and
prognostic marker? Two such molecules of interest are
granulocyte-macrophage colony-stimulating factor (GM-CSF)
and VEGF. GM-CSF has been shown to suppress apoptosis in
normal neutrophils incubated in the plasma of patients with
ALI and exploitation of this process by the administration of
GM-CSF receptor antibody has been suggested as a novel
treatment modality [122]. In addition, there may be prognostic
value, as GM-CSF in BAL fluid correlated directly with patient
survival; those with significantly higher levels were more
likely to survive [123].

The VEGF receptor, implicated in multiple models of
proliferative and apoptotic pathways, has been linked to
increased vascular permeability in ARDS. In human ARDS
patients a decrease in VEGF from intensive care unit day 1 to
day 4 was associated with improved outcomes and reduction
in overall mortality to 12%, while an increase in VEGF over the
same time period predicted 78% mortality. Those with more
than a doubling of VEGEF levels had 100% mortality [124].

CELL WOUNDING AND REPAIR

The term injury has been used to describe biological responses
as diverse as altered gene or protein expressions, abnormal
respiratory mechanics, inefficient gas exchange, impaired
vascular barrier properties or the remodelling of lung
structures. Therapies directed against each and every one of
these injury manifestations exist, but to date none of them has
influenced ARDS survival. So far, the only effective therapy is
low VT mechanical ventilation, maybe because it is directed at
the stimulus, deforming stress, as opposed to single elements
of a complex immune response to that stimulus. Demands for
pulmonary gas exchange set limits by how much the
deforming stress associated with breathing may be reduced.
While the critical care community has for the most part
accepted hypercapnic acidosis as a sometimes necessary
consequence of lung protective mechanical ventilation, the
demand for oxygen uptake still requires that some minimal
alveolar ventilation be achieved [125]. Therefore, pharmaco-
protective interventions, which prevent the deleterious con-
sequences of lung deformation and which modify cellular
mechano-transduction, defined in its broadest terms, would be
of great value as adjuncts to lung protective mechanical
ventilation.
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Adherent lung parenchymal cells, which are exposed to
mechanical ventilation with high volumes and transpulmon-
ary pressure, experience reversible plasma membrane
wounds [126-128] and, as a result, initiate pro-inflammatory
signalling cascades [129]. Cells possess a vast repertoire of
genomic and physiomic responses to deforming stress, most
of which occur in the absence of structural lesions [130];
however, the evidence for the existence of wounded lung
cells in patients with VALI and in experimental models of
VILI is compelling [126, 127] and therefore the hypothesis
that wounded lung cells are important transducers of
injurious stress is attractive. It follows that interventions that
reduce the susceptibility of lung cells to stress failure may be
just as effective in preventing VALI as the reduction of the
injurious stimulus itself, namely low VT, has turned out to be.
Raising blood tonicity with hypertonic saline or mannitol
solutions could potentially achieve this goal because of the
following reasons. 1) Hypertonic exposure reduces cell
volume and thereby creates a relative excess of plasma
membrane. As a result, the lipid bilayer of the plasma
membrane can simply unfold with a minimal increase in
lateral tension when an externally imposed cell shape change
demands it. 2) Hypertonic exposure reduces the water
activity inside the cell and promotes a state of increased
cytoskeleton polymerisation, which has the following con-
sequences. 1) Stress tolerance of the subcortical cytoskeleton,
i.e. the critical stress at which the cytoskeleton network yields
or brakes, is increased; 2) the lipid bilayer of the plasma
membrane, which coats the subcortical cytoskeleton, is less
likely to experience lytic tension; 3) plasma membrane
wounds that do develop are smaller and are therefore more
likely to heal; 4) translocation of nucleation factors to the
submembranous actin cytoskeleton accelerate cytoskeleton
remodelling and repair (the latter may be triggered by a
calcium-induced phase transition (displacement of ordered
water molecules by Ca®") at the wound); and 5) a more
tightly woven actin network at the wound base would serve
as the matrix for wound closure by lateral plasma membrane
lipid flow.

While these hypotheses have strong cellular biological support,
they have not been sufficiently tested in pre-clinical VALI
models, let alone in patients. Moreover, the clinical experience
of using hypertonic solutions, for example, in brain injury and
trauma victims, does not consider the safety of maintaining an
increased plasma osmotic pressure for extended periods of
time.

Many of the epithelial, endothelial and inflammatory cell-
derived biomarkers studied to date may be considered
surrogates of cell wounding. However, in aggregate they are
no more specific than physiological and clinical character-
istics embedded in prognostic systems, such as the
Simplified Acute Physiology Score and Acute Physiology
and Chronic Health Evaluation, so that their roles as
monitors of disease severity or treatment effect remain to
be established. For this reason, avoidance of potentially
harmful lung-distending pressure and maybe monitoring of
regional aeration are currently more effective therapeutic
guides than serial measures of protein and lipid mediators
in plasma or BAL.
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FUTURE DIRECTIONS

The critical care community would like to see biomarkers
inform about lung inflammation in the same way that troponin
informs about myocardial injury. The ALI mediators studied to
date do in fact achieve this. However, there are several reasons
why, at least in the near future, their clinical utility will not
rival that of cardiac biomarkers. The lung is a more complex
organ and the questions posed by critical illness syndromes
that involve the lungs are more nuanced and challenging. The
recognition of ALI as a complex, holosystemic response is
likely to drive the next paradigm shift and shape future
research. That shift may already be underway, as a multi-
disciplinary approach spurred by network- and systems-based
theory begins to take hold, encouraging the integration of the
traditional fields of basic science with advances in computer
modelling, analysis and bioinformatics. Tangible examples
include the raw computational power harvested to decode and
map the human genome, and the related subsequent advance
in gene and proteomic microarrays (gene or protein “chips”).
These techniques currently enable and drive the analyses of
thousands of DNA or RNA sequences and their associated
molecules, proteins and signalling cascades, unlocking
advanced interrelationships previously not envisioned,
although not for lack of imagination, but for lack of computing
power to handle signalling networks on a scale too vast for
conventional techniques to grasp.

The true power not only comes from the adept acquisition and
analysis of large amounts of data, but also from the ability to
store and quickly retrieve this information for comparative
purposes. For example, a patient could be admitted to an
intensive care unit of the future where a clinical and
physiological assessment takes place (fig. 1). A laboratory
sample would be taken and submitted for microarray analyses,
using an acute lung injury chip. The patient’s unique “chip
fingerprint” could then be compared with a database of
previously collected (and continuously growing) profiles of
acute lung injury patients for optimisation of interventions,
prognostic value and perhaps even monitoring on a real-time,
or quasi-real-time basis. The advantages are clear and wide-
ranging. Not only does the individual patient benefit from the
stored pool of knowledge, but so too does the collective
knowledge base with each new case. While genomics and
proteomic networks have captured the imagination of physi-
cians, scientists and futurists, their integration with physiomics
and syndromics will truly revolutionise critical care medicine.
As the present knowledge expands, the use of datasets and the
ability to tag groups of pathways involved in specific processes
with keywords, such as “diabetes” or “acute lung injury”’, will
allow healthcare providers to abstract and comprehend large
volumes of data. The power of Boolean searching and tagging
via signalling or mediator connections (similar to an internet
search engine, such as Google) should allow not only for an
easier, but also for a more intuitive way to understand these
complex associations, and open up therapeutic targeting or
treatments in previously unimaginable ways. Given the
incredible complexity and redundancy in disease mechanisms,
it would be a cliché to emphasise the difficulty of “seeing
the wood for the trees”. Whether that refers to the mosaic
patterns of thousands of mediators on a theoretical acute
lung injury chip, or to contextual layers in combination with,
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or on top of, networking systems and signalling cascades,
the differentiation between the full forest and the rest of
the trees can sometimes be problematic. With regard to
novel treatment modalities for acute lung injury and acute
respiratory distress syndrome, the controversial questions
may soon ask where one should stand in order to optimise
the view.

Therapeutic
intervention
Clinical Laboratory
observations observations

Ventilation and related
measures

}

Patient recognition and database comparison

Signalling molecules and
mediators

Apoptotic

Inflam-
mation

Integration of physical observations with signalling mediator pattern
analysis:
“The ALI chip”

A A

y
' ' -
Revised
Accelerated | : o
diagnosis therapeutic

decision making |

4

—

Database building
and validation

Internal improvement
and quality assurance

A

Improved outcomes Increased test

sensitivity and specificity|
I | I—

FIGURE 1. The “acute lung injury (ALI) chip”. A proposed mechanism for the
analytical integration of clinical observations with laboratory data obtained in
patients with ALI. Examples of potential future data points include reactive oxygen
species (ROS), and mediator levels from a number of pathways involved in the
pathophysiology of ALl (see text for details). Microarray technology can search for
abnormal levels or patterns of change in important mediators, and further
contextualise the results through the integration of clinical data, such as that from
haemodynamic and ventilator monitoring. Advances in computing power, artificial
intelligence and network system theory aid in raw and comparative analysis to
benefit the current patient by immediate retrieval of similar cases, treatment
strategies and outcomes, to providing immediate feedback, as well as the potential
for suggesting interventions with a reported statistical basis for success. Finally, the
system is dynamic, “learning” by the addition and integration of each new case into
its repertoire of databases, to improve predictive ability and outcomes over time.
The utility level based on current evidence is as follows: green: promising; blue:
uncertain; red: unlikely.
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