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REVIEW

Autoimmunity and pulmonary hypertension:
a perspective

M.R. Nicolls, L. Taraseviciene-Stewart, P.R. Rai, D.B. Badesch and N.F. Voelkel

ABSTRACT: The association between autoimmunity and pulmonary arterial hypertension (PAH)
has been appreciated for >40 yrs, but how autoimmune injury might contribute to the
pathogenesis of this disease has only been examined in a case-specific manner.

It is becoming increasingly clear that a variety of diverse clinical diseases, ranging from viral
infections to connective tissue disorders, can culminate in pulmonary vascular pathology that is
indistinguishable. Is there a hitherto unappreciated biology that unites these seemingly unrelated
conditions?

The answer to this question may come from the increasing body of evidence concerned with the
central importance of regulatory T-cells in preventing inappropriate B-cell activity. Two striking
similarities between conditions associated with severe angioproliferative pulmonary hypertension
are a defect in the CD4 T-cell compartment and auto-antibody production. Pathogenic auto-
antibodies targeting endothelial cells are capable of inducing vascular endothelial apoptosis and
may initiate the development of PAH.

The present review will focus on what is known about autoimmune phenomena in pulmonary
arterial hypertension patients, in order to better consider whether an early loss of self-tolerance
followed by autoimmune injury could influence the early development of severe angioproliferative

pulmonary hypertension.
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pulmonary hypertension

evere pulmonary arterial hypertension
s (PAH) can be a manifestation of a number
of collagen vascular diseases and viral
infections. For example, ~12% of patients with
scleroderma will develop PAH [1]. Other dis-
orders, such as systemic lupus erythematosis,
polymyositis, Sjogren’s syndrome and Hashimo-
to’s thyroiditis have all been associated with the
development of severe PAH [2]. It is also known
that certain viral infections, e.g. HIV and human
herpes virus (HHV)-8, can be associated with the
development of severe PAH [3-6]. Of great
interest, is that all of these conditions are either
characterised by, or have a propensity to, auto-
immunity. A self-directed immune attack may
occur because of a relative paucity of regulatory
CD4 cells. It is already known that for some of
these diseases, there is a diminution of the
putative regulatory subset thought responsible
for peripheral immune tolerance, the CD4+CD
25+ cell. The present review will discuss how a
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loss of self-tolerance could initiate a process
which ultimately results in PAH.

PULMONARY HYPERTENSION:
PATHOLOGY AND CLASSIFICATION

The most recent clinical and pathological classif-
ications of pulmonary hypertensive diseases
were established at the Evian conference [7],
and updated in 2003 in Venice, Italy [8]. Pathol-
ogically, PAH is characterised by a proliferation
of endothelial cells and expansion of vascular
smooth muscle and adventitial cells in pulmon-
ary arteries [9]. There is a growing appreciation
that vasoconstriction of pulmonary pre-capillary
arterioles may not be the single most important
factor leading to severe pulmonary vascular
remodelling. Although not yet widely accepted,
the authors of the current review use the term
““severe angioproliferative pulmonary hyperten-
sion”” (SAPPH) [10] to distinguish, categorically,
between pulmonary vascular disease which
develops because of endothelial cell proliferation
and pulmonary vascular disease which develops
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predominantly because of increased muscularisation of vessel
walls [8]. Examples of PAH arising from endothelial cell
pathology include idiopathic pulmonary arterial hypertension
(IPAH; formerly known as primary pulmonary hypertension)
[8], HIV-induced PAH and CREST (calcinosis, Raynaud’s
phenomenon, oesophageal dysfunction, sclerodactyly,
telangiectasis)-related SAPPH. Examples of PAH associated
with severe muscularisation of the pre-capillary arterioles,
which demonstrate no clear cut evidence for endothelial cell
pathology, include some hypoxia-associated PAH conditions
such as chronic mountain sickness [11, 12] and neonatal PAH
[13, 14]. The term SAPPH is preferred for several reasons. 1)
SAPPH provides a pathobiological concept, (i.e. angiogenesis
or angioproliferation). 2) SAPPH unites both so-called primary
and secondary forms of PAH, under the banner of “severe”
and associates the condition with complex pulmonary vascular
lesions, including plexiform lesions. 3) SAPPH likely provides
prognostic and therapeutic information in that, at the present
time, the treatment for these severe forms of angioproliferative
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PAH is quite similar [10]. SAPPH is also characterised by the
presence of inflammatory cells in and around affected
pulmonary vessels. HEATH [15] described the presence of mast
cells in plexiform lesions in patients with primary PAH
>30 yrs ago. Further work by TUDER et al. [16], and also
HUMBERT et al. [17] described the presence of inflammatory
infiltrates in the vascular lesions of PAH. Figures 1 and 2
illustrate the immune pathology in a patient with IPAH which
is notable for lymphocyte and mast cell infiltration, as well as
immunoglobulin G deposition in and around the narrowed
and occluded vascular lumen.

PAH: AUTOIMMUNITY AND IMMUNOREGULATION

Whether the presence of inflammatory and immune cells, such
as T- and B- lymphocytes in the lesions [16] is cause or
consequence of SAPPH remains unknown and may be debated
for some time. However, it has been recognised for >40 yrs
that there are associations between autoimmune disorders and
severe PAH. Little progress has been made in the current

FIGURE 1. Immune pathology of pulmonary arteriole from an idiopathic pulmonary arterial hypertension patient. A 38-yr-old (antinuclear antibody positive, human
herpes virus 8 positive) female expired with idiopathic pulmonary arterial hypertension. a) Haematoxylin and eosin stain showing affected arteriole surrounded by palisading
mononuclear cells. b) CD4+ (fast red substrate (red staining); white arrow) and CD8+ (3,3’-diaminobenzidine (brown staining); black arrow) cells around lesion. ¢) Giemsa
stain of mast cells indicating peri-arteriole infiltration. d) A magnified view of the lesion, mast cells are indicated by the black arrows.
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FIGURE 2. Immunoglobulin G staining of plexiform lesion from an idiopathic arterial pulmonary hypertension patient. A 38-yr-old (antinuclear antibody positive) female
expired with idiopathic pulmonary arterial hypertension. a) Immunoglobulin G positivity in and around the plexiform lesion (3,3'-diaminobenzidine; brown staining).
b) Negative antibody control of peripheral lymph node. ¢) Positive antibody control of peripheral lymph node.

understanding of how immune injury may be involved in the
pathogenesis of SAPPH. In addition to the well recognised
association between autoimmunity and SAPPH, there is also a
link between immune insufficiency and SAPPH, because HIV+
patients and patients with AIDS develop PAH and vascular
lesions which are histologically indistinguishable from IPAH.
The recent description of latent HHV-8 [18] in patients with
IPAH further begs the question of how the immune system
modulates the development of PAH.

The answer to this question may be that most conditions
associated with SAPPH are associated with a defect in the CD4
T-cell compartment, meaning that these conditions are either
characterised by an absolute deficiency of CD4 cells, a
decreased CD4/CD8 ratio and/or a diminished relative
percentage of CD4+CD25+ cells, the putative regulatory T-cell
(Treg) subset. Specifically, HIV [3], HHV-8 [4, 5] and the
hepatitis C virus [6, 19-21] are all infections associated with
a CD4 defect, autoimmune phenomena (including auto-
antibodies) and the development of SAPPH. Similarly, other
PAH-associated conditions, including connective tissue dis-
orders, are also associated with a CD4 cell defect. For example,
scleroderma [22, 23], systemic lupus erythematosus [24, 25],
polymyositis [26], Hashimoto’s thyroiditis [27] and Sjogren’s
Syndrome [28] can all exhibit selective CD4 cell defects and
autoimmunity (again including auto-antibodies). More speci-
fically, scleroderma and lupus are associated with a reduction
in peripheral CD4+CD25+ cells, the putative Treg population
[23-25]. Furthermore, PAH has been described following
splenectomy [29]. Finally, it was recently reported that a
patient with autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy, which is caused by a mutation leading
to the loss of function of the autoimmune regulator (AIRE)
protein, died with fatal IPAH [30]. The AIRE gene is of central
importance in the development of thymus-dependent self-
tolerance. T-cell, B-cell, macrophage and mast cell infiltration is
a characteristic patholological feature of plexiform lesions from
SAPPH patients [16, 31]. Furthermore, it is estimated that 30-
40% of the patients with IPAH are antinuclear antibody
positive, and another 10-15% of those patients may express
antiphospholipid antibodies [32, 33]. A unifying hypothesis
that addresses these cumulative findings is that, in the setting
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of relative or absolute immunodeficiency (which includes
diminished Treg activity), immune dysregulation occurs and
leads to the activation of pathogenic autoreactive B-cells and
T-cells.

If autoimmunity triggers the development of SAPPH, then
why is the prevalence of PAH relatively low for certain
autoimmune conditions such as systemic lupus erythematosus
(6.2%) [34]? If the autoimmune phenomena resulting in end-
organ damage are at play, why is the pulmonary vasculature
not universally involved in these autoimmune connective
tissue disorders? While this question can’t be answered
definitively at this time, there are several possibilities. It is
known that in certain autoimmune conditions, a genotype can
confer significantly elevated risk without complete disease
penetrance. For example, in type 1 diabetes while increased
risk is conferred on the basis of the HLA-DR-DQ genotype,
fewer than 10% of susceptible individuals or 30-40% of
identical twins of a patient with type 1 diabetes will develop
the disease [35]. Environmental factors such as dietary or viral
infections have been invoked as necessary “‘second hits” to
develop this disease. Similarly, it is likely that a two-hit
phenomenon may be required such that autoimmunity results
in vascular injury and PAH. The current authors hypothesise,
that a common factor in PAH-associated conditions is a loss of
immunoregulation and that the second ““permissive” factor
could be the patient’s genotype and/or concomitant vascular
injury due to infection or temporary high shear stress. In
summary, incomplete penetrance of PAH in autoimmune
conditions associated with PAH may be due to the require-
ment of two or more additional factors that are present in a
minority of the patients.

SCLERODERMA: A PARADIGM OF AUTOIMMUNE PAH

Scleroderma is a connective tissue disorder characterised by
excessive collagen accumulation in the skin and visceral organs.
As mentioned above, it is estimated that ~12% of sclero-
derma patients will develop SAPPH [1]. Scleroderma resear-
chers believe that endothelial cell apoptosis may be the first
event in the pathogenesis of scleroderma [36]. Anti-endothelial
antibodies are found in the circulation of scleroderma patients
[37, 38], and their presence correlates with the clinical
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progression of this disease [38]. An instigating injury to
endothelial cells in scleroderma that may trigger such
auto-antibody formation may be viral infection [39]. A
number of investigators have found evidence for viral
infections, such as Epstein-Barr virus, parvovirus B19 and
hepatitis C, E, and G in patients with scleroderma [40-45].
Although the role of cytomegalovirus (CMV) in the pathogen-
esis of scleroderma is debated [46], indirect evidence for a role
of CMV-specific antibodies in the development of this disease
has also been discussed [47, 48]. Not only are absolute
lymphocyte counts reduced in scleroderma [49, 50], but
scleroderma patients also have relatively fewer CD4+CD25+
cells in the peripheral circulation compared with healthy
controls [23]. In this setting of diminished Tregs, a dysregula-
tion of B-cells is also observed [51]. Plexiform lesions found in
the arterial walls of scleroderma PAH patients include an
inflammatory infiltrate [52] consisting of macrophages, T-cells,
B-cells and mast cells [53-55]. In summary, scleroderma is an
autoimmune disorder that has been associated with viral
infection, endothelial damage, diminished Tregs, dysregulated
B-cells, abundant mast cells and auto-antibodies. This review
will subsequently discuss how Treg activity is related to B-cell
activity, how mast cell infiltration is linked to the production
of auto-antibodies, and finally, how these processes may
culminate in PAH.

AUTOREACTIVE B-CELL ACTIVATION IN THE ABSENCE
OF T-CELL REGULATION

Two findings, made nearly 30 yrs ago, strongly implicated
T-cells as being responsible for the control of self-reactive
T-cells and B-cells in the maintenance of self-tolerance. In 1969
NisHIZUKA and SAKAKURA [56] demonstrated that neonatal
thymectomy of normal mice, most notably between day 2 and
4 after birth, led to autoimmune destruction of ovaries. In 1973,
PENHALE et al. [57] showed that thymectomy of adult rats
followed by several exposures to sublethal X-irradiation led to
the development of autoimmune thyroiditis. As inoculation of
normal CD4+ cells prevented these diseases, both groups
suspected that depletion of suppressor T-cells was a putative
mechanism for the development of autoimmunity [58, 59]. As
this population was eventually narrowed down to the
CD4+CD25+ cell, it became clear that depletion of this
relatively small subpopulation (5-10% of CD4+ cells) was
sufficient to break natural self-tolerance and incite chronic and
destructive autoimmune diseases. This loss of self-tolerance
was associated with the appearance of various disease-specific
auto-antibodies [60]. With complete elimination of CD4+CD25
+ cells, systemic autoimmunity occurs as manifested by multi-
organ inflammation and auto-antibody production [61].

In addition to controlling T-cell activity, Tregs influence B-cell
responses. For example, CD4+CD25+ Tregs have been shown
to directly inhibit lipopolysaccharide-induced proliferation of
B-cells in vitro. In an adoptive transfer system, CD4+CD25+ T-
cells downregulate T-cell-mediated production of self-reactive
antibodies. As activated B-lymphocytes produce CCL5 and
attract CD4+CD25+ T-cells in vitro, it has been postulated that
B-cell recruitment of CD4+CD25+ T-cells could limit B-cell
autoimmune responses [62]. CD4+CD25+ cells prevent the
activation of anti-DNA antibodies in a transgenic system [63].
Thus, Tregs regulate antibody responses against self and
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nonself antigens. Tregs may exert a direct inhibitory effect on
B-cells [62] or may inhibit T-cell differentiation [64]. Therefore,
in the absence of appropriate regulation by T-cells, auto-
antibodies can arise, and autoimmune disease can develop.
Thus, a loss of Treg-mediated self-tolerance leads, not only to a
loss in T-cell tolerance, but to a breakdown in B-cell tolerance
as well. In the absence of these Tregs, other cells presumably
provide stimulatory signals to relevant self-reactive B-cells,
rescue them from apoptosis, and stimulate them to form
pathogenic antibodies [65].

A conventional understanding of autoimmune disorders
implicates an inappropriately vigorous T-cell compartment in
autoimmune disorders such as diabetes and multiple sclerosis
[66]. Conversely, autoimmune diseases such as Sjogren’s
disease and systemic lupus erythematosis, are distinguished
by pathogenic auto-antibody production in the setting of
apparently compromised Treg function. Autoimmunity in
PAH may more closely resemble the latter group of diseases.
As discussed above, Treg activity is normally responsible for
preventing auto-antibody production. Antibodies directed
against the vascular endothelium could certainly promote
endothelial apoptosis. It is possible that endothelial apoptosis,
secondary to autoimmune injury, could initiate dysfunctional
endothelial cell proliferation that culminates in PAH in the
same manner that endothelial apoptosis, induced by vascular
endothelial growth factor antagonism, results in endothelial
cell proliferation and PAH [67]. Anti-endothelial antibodies are
present in autoimmune disorders associated with PAH in-
cluding systemic lupus erythematosus [68], mixed connective
tissue disease [69] and scleroderma [38]. In lupus and Sjogren’s
syndrome, antibody and complement deposits are localised in
the walls of pulmonary arteries of patients with PAH [70, 71].
So, in short, the effector cells in this form of autoimmunity may
be B-cells which (following differentiation into plasma cells)
produce anti-endothelial antibodies. Although the role of
autoreactive B-cells is emphasised here, the presence of T-cells
in the inflammatory lesion suggests that dysregulated T-cells
also contribute to autoimmune injury in PAH.

It is helpful to consider the antiphospholipid syndrome which
may be a clinical scenario that has many elements of the PAH
model described above. Patients with the antiphospholipid
syndrome have altered T-lymphocyte subsets in the periphery,
most notably a significantly reduced CD4+CD25+ population
[72]. The antiphospholipid syndrome is often associated with
viral syndromes associated with PAH, such as HIV and
hepatitis C, which can have immunomodulatory effects [73].
The hypothesis posited here states that defects in the Treg
population (which could occur after a viral infection) will lead
to a loss of Treg activity with subsequent production of auto-
antibodies and associated vascular endothelial injury. The
antiphospholipid syndrome is associated with antiphospholi-
pid antibodies that bind and activate endothelial cells. This
antibody engagement ultimately leads to apoptosis of vascular
endothelial cells [74, 75]. Finally, unmanipulated athymic nude
mice, that also have an isolated deficiency of T-cells, have been
demonstrated to spontaneously develop antiphospholipid
antibodies, whereas severe combined immunodeficiency mice,
which lack both T- and B-cells, do not have antiphospholipid
antibodies [76]. Thus, in the antiphospholipid syndrome and
other autoimmune disorders, the effector cell of greatest
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importance may be the dysregulated B-cell that produces auto-
antibodies to vascular endothelium because normal regulatory
T-cell activity is decreased or absent.

When Treg activity is diminished, mast cells, rather than T-
cells, may potentiate B-cell activation via interleukin (IL)-4 (i.e.
mast cells may substitute as a source for IL-4 to increase local
B-cell activation [77]). Of note, mast cells are a significant
source of non-T-cell IL-4 [78], and IL-4 has been implicated as
an expander of autoreactive B-cells [79] and a cytokine of
central importance in an experimental model of scleroderma
[80-82]. The presence of mast cells in and around plexiform
lesions has long been observed [15, 31]. Mast cells were
originally thought to be pathogenically important in PAH [83],
and were discounted as it was subsequently demonstrated
that a dearth of mast cells did not prevent experimental
PAH [84], while a surfeit of mast cells [85, 86] was not
associated with clinical PAH. However, mast cells are in-
deed present in both the inflammatory lesions of PAH patients
[31] and monocrotaline-induced PAH in athymic nude rats
lacking T-cells [87]. The latter group is interesting because
monocrotoline-induced PAH is exacerbated by an absence of
Tregs (i.e. when no T-cells are present) and is notable for mast
cell infiltration in the inflammation around plexiform lesions.
The present authors propose that the presence of mast cells
may not be required for all subtypes of PAH, but that, as in
other autoimmune diseases, mast cells may be an important
link between the innate and adaptive immune responses [88,
89]. Rather than being absolutely required for the develop-
ment of PAH, mast cells may be important facilitators of the
immune response by potentiating autoreactive B-cells. Given
the putative importance of cytokines and chemokines in the
generation of an adaptive immune response, it is important to
also note that IL-1 and IL-6 serum levels are markedly elevated
in severe PAH and may significantly contribute to the inflam-
matory milieu of this disease [90].

BONE MORPHOGENETIC PROTEIN RECEPTOR II: A
NEW INTERPRETATION OF ITS ROLE IN THE
DEVELOPMENT OF PAH

A genetic basis has recently been determined for some cases of
familial PAH, i.e. the involvement of germline mutations of
bone morphogenetic protein receptor II (BMPR2) [91]. BMPR2
is a member of the tumour growth factor (TGF)-p receptor
family and is a ligand for bone morphogenetic proteins (BMPs)
2, 4, 6 and 7, but not TGF-B [92]. Of pertinence to the current
model is that BMP2 and -4 have roles in the development,
growth potential and apoptosis of T- and B-cells. BMP2 and
BMP4 (and likely its receptor, BMPR2) are also essential for
thymocyte differentiation [93-95], and proper Treg develop-
ment in the thymus is critical to avoid autoimmune disease
[60]. BMP2 mediates growth arrest and apoptosis of B lineage
cells [96, 97]. Finally, BMP4 is essential for the generation of B-
cell progenitors (in addition to erythro-myeloid colony form-
ing cells and natural killer progenitors) [98]. It is conceivable
that as a receptor for these BMPs, BMPR2 is intimately
involved in these immune effects. This has already been
suggested for the BMP effects on thymic maturation [93]. Thus,
it is possible that BMPR2 mutations could deleteriously affect
the normal development, maturation, growth arrest and death
of lymphocytes. In a manner analogous to patients developing
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PAH because of AIRE gene mutations [30], germline BMPR2
mutations may, in part, result in PAH because they lead to a
fundamental defect in peripheral immune tolerance (i.e.
inappropriate Treg development and/or abnormal ability to
delete B-cells). This idea opens interesting avenues of research
focusing on the role of BMPR2 in immune tolerance rather than
simply on its effects on smooth muscle cell growth.

AN INTEGRATED MODEL OF SAPPH DEVELOPMENT
The fact that PAH generally does not respond to immunosup-
pression may explain why investigators have not comprehen-
sively explored a causal link between autoimmune injury and
PAH. However, it is quite possible that a maladaptive response
to an initial inflammatory injury results in a delayed tissue
injury response that has a biology entirely distinct from the
triggering immune insult and is no longer responsive to
immunotherapy, which may have been responsive in the
“initiation phase”. In the case of PAH, endothelial cell
destruction by immune-mediated injury may result in the
generation of apoptosis-resistant endothelial cells which
share features with malignant cells [99-101]. In this scenario,
the “law of the monolayer” is broken, and these endothelial
cells proliferate, become “heaped up” and eventually
obscure the vessel lumen [16]. These ideas are represented in
figure 3.

CONCLUSION

National Institutes of Health registry data indicated that the
median survival of patients with sporadic PAH was 2.8 yrs,
with survival rates at 1, 3, and 5 yrs being 68, 48 and 34%,
respectively [102]. While prostanoid therapy is improving
survival for certain forms of PAH [103], PAH remains a
frequently lethal disease of relatively mysterious origins. For
>40 yrs it has been recognised that autoimmune phenomena
are associated with PAH, but it has never been previously
demonstrated that autoimmunity, itself, may be a root cause
for certain forms of PAH. The human and financial toll of PAH
is significant. For example, the prevalence of scleroderma in
the USA was ~9,000 patients in 1996 [104], and, as noted, 12%
of scleroderma patients will develop PAH [105-108]. The 1997
USA cost of caring for scleroderma patients was $1.5 billion/
year with the majority of money going towards the treatment
of PAH [109]. Current treatment strategies for subtypes of
PAH known to be associated with autoimmune disorders are
currently no different than management of PAH without an
established autoimmune association [110]. If autoimmunity is
truly important in the pathogenesis of PAH, then at risk
patients (such as those with scleroderma or PAH family
members with BMPR2 mutations) can potentially be targeted
with immunotherapy designed to prevent the establishment
and propagation of autoimmune injury. Developing an under-
standing of how autoimmunity can trigger PAH would be
invaluable in forming models of PAH pathogenesis and could
promote the design of novel therapeutics which specifically
address immune dysregulation. The concepts outlined in the
present review attempt to explain some common clinical
observations. Most notably, the hypothesis advanced here
unites the concept of immunodeficiency and autoimmunity
which is frequently observed in conditions associated with
PAH. Furthermore, the presented model can explain cell
populations (such as mast cells) that are strongly associated
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FIGURE 3. A schematic diagram displaying autoimmunity in the evolution of
pulmonary arterial hypertension (PAH). 1) Injury to vascular endothelium (e.g. from
a vascular trophic virus or shear stress) exposes endothelial antigens. In viral
infection, connective tissue diseases or genetic defects in immune tolerance,
diminished regulatory T-cell (Treg) activity may be observed. When the “two hits” of
vascular injury and diminished peripheral immune tolerance occur simultaneously,
this may lead to a loss of the normal control exerted on autoreactive B-cells. As part
of the immediate innate host defence to vascular injury, mast cells infiltrate the
perivascular space near injured endothelium. Mast cells are a rich source of
interleukin (IL)-4, as well as other factors, which are capable of stimulating
autoreactive B-cells to secrete auto-antibodies including anti-endothelial cell
antibodies. 2) Clinical PAH is characterised by B-cells (B), T-cells (T) and mast
cells (M) infiltrating plexiform lesions, and antibody-complement deposits that are
located in the pulmonary arteries of patients with PAH. It is possible that during this
initial inflammatory period, the lesion could be reversed with immunotherapy. 3)
Antibody deposition may contribute to ongoing endothelial apoptosis. 4) As a tissue
repair response, ongoing endothelial apoptosis results in the generation of
apoptosis-resistant endothelial cells that have a malignant phenotype. This may
be a period of injury that is no longer amenable to immunotherapy. 5) Apoptosis-
resistant endothelial cells become “heaped-up”. The resulting vascular remodelling
leads to vascular occlusion, an increased vascular resistance and worsening of
PAH.

with the disease, but have not previously been pathogeneti-
cally integrated.

In summary, by identifying a critical immune basis for many
forms of pulmonary arterial hypertension, a rational design of
therapeutic targets for this group of frequently fatal diseases
will be strongly facilitated.
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