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ABSTRACT: In the past S yrs, positron emission tomography (PET) with "3F-fluoro-2-
deoxy-D-glucose (FDG) has become an important imaging modality in lung cancer
patients. At this time, the indication of FDG-PET as a complimentary tool to computed
tomography in the diagnosis and staging of nonsmall cell lung cancer has gradually
gained more widespread acceptance and also reimbursement in many European
countries.

This review focuses on the data of FDG-PET in the diagnosis of lung nodules and
masses, and in locoregional and extrathoracic staging of nonsmall cell lung cancer.
Emphasis is put on the potential clinical implementation of the currently available FDG-
PET data. The use of FDG-PET in these indications now needs further validation in
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large-scale multicentre randomized studies, focusing mainly on treatment outcome

parameters, survival and cost-efficacy.

Interesting findings with '3F-fluoro-2-deoxy-D-glucose-positron emission tomography
have also been reported for the evaluation of response to radio- or chemotherapy, in
radiotherapy planning, recurrence detection and assessment of prognosis. Finally, a
whole new field of application of positron emission tomography in molecular biology,
using new radiopharmaceuticals, is under extensive investigation.

Eur Respir J 2001; 17: 802-820.

Lung cancer is the most common cause of cancer-
related death in the Western world. Approximately
three million new cases per year are estimated world-
wide, of which more than 200,000 are in the European
Union. An increase in incidence is to be expected until
the first decades of the 21st century.

Imaging techniques such as chest radiography, com-
puted tomography (CT), ultrasonography (US), and
sometimes magnetic resonance imaging (MRI) are
essential in the diagnosis, staging, and follow-up of
patients with lung cancer. These imaging tests are based
on differences in the structure of tissues, measured by
differences in density (for CT), in surface reflectivity
(for US), or in chemical environment (for MRI).
Although current imaging technology allows exquisite
anatomical detail, the density differences often don't
allow a definitive diagnosis and staging, and more
invasive tests with tissue sampling are required.
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Positron emission tomography (PET) has been used
over the last decades mainly as a research tool for brain
function studies [1, 2] and for the assessment of cardiac
metabolism. In the past Syrs, it has generated wide-
spread enthusiasm as an innovative imaging technique
in oncology, based on its ability to visualize differences
in metabolism of tissues.

Lung tumour cells have a much higher rate of
glycolysis in comparison with non-neoplastic cells, and
an increased cellular uptake of glucose, probably due to
an increased expression of glucose transporter proteins
[3-6]. FDG, a glucose analogue in which the oxygen
molecule in position 2 is replaced by a positron-emitting

"fluorine, undergoes the same uptake as glucose, but is
metabohcally trapped and accumulated in the neoplas-
tic cell after phosphorylation by hexokinase (fig. 1) [7-9].

Positron-emitting isotopes such as '*fluorine have an
excess of protons and are, therefore, unstable. They
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Fig. 1. — Lung tumour cells have an increased uptake of 'SF-
fluoro-2-deoxy-D-glucose (FDG) and an increased activity of
hexokinase generating large amounts of FDG-6-phosphate. This
glucose analogue is metabolically trapped and accumulated in
the neoplastic cell. HMP: hexose monophosphate pathway.

decay by emission of a positron, which is the subatomic,
positively charged, antiparticle of the negatively char-
ged electron. The positron released in this process has
kinetic energy, travels a short distance, and then
annihilates with an electron. This annihilation creates
two 511keV photons, emitted in opposite directions.
The detection of a number of these annihilations by
the detector rings of the PET-camera generates high
resolution pictures (resolution 5-10 mm) indicating the
sites of FDG accumulation in the body [10]. The
preferential accumulation of FDG in neoplastic cells
permits differentiation between benign and malignant
tissue. In this way, FDG-PET compliments the ana-
tomical information on standard imaging with "meta-
bolic" information.

In contrast to the rapidly evolving data on the role
of FDG-PET in nonsmall cell lung cancer (NSCLC),
there are only a few anecdotal reports dealing with
small cell lung cancer [11, 12].

After a short technical note on PET scanning
protocols, this review will mainly focus on the current
clinical indications of FDG-PET: diagnosis of lung
nodules and masses, and staging of NSCLC (table 1).
For these indications, there is already reimbursement
in several European countries. It continues with a
short overview of the studies on other applications in
NSCLC, and end with some prospects for the future.

Table 1. — Indications for '®F-fluoro-2-deoxy-D-glucose
positron emission tomography (FDG-PET) in respiratory
oncology

Current clinical indications
Diagnosis
Evaluation of nodules and masses
Staging
Locoregional staging
Extrathoracic staging
Other applications
Therapy planning
Radiotherapy planning
Therapy monitoring
Response post radiotherapy
Response post (induction) chemotherapy
Follow-up after therapy
Diagnosis of recurrence
Prognosis
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Technical note

The behaviour of FDG in normal and neoplastic
tissues can be studied with different PET acquisition
protocols.

Nonattenuation corrected whole-body images

This is the most commonly used imaging protocol
in clinical oncology studies (fig. 2). FDG is injected
outside the PET-camera. After an uptake period of
>1 h, necessary to obtain a good tumour to normal
tissue contrast, the patient is positioned into the
camera. Since the field of view of the PET-camera is
only 10-15 cm, different bed positions need to be
scanned to obtain a whole-body survey. At the end,
the data of the different bed positions are reconstruc-
ted to a whole-body image by a computer algorithm,
taking into account the physical decay of the FDG
tracer during the examination. The advantage of this
technique is that it allows a fast acquisition (usually
<45 min) of information of the total body. The dis-
advantage is that, since no attenuation correction is
performed, this technique only generates images for
visual interpretation.

Attenuation-corrected images

An important number of the emitted photons are
absorbed in the patient’s body. This absorption de-
pends on the position in the body (e.g. superficial
lesions are less attenuated than those situated in
deeper layers of the body) and the type of surrounding
tissue (e.g. lung tissue is less attenuating than muscle
tissue). Since the intensity of photon emission of a
lesion is position dependent, the intensity seen on the
nonattenuation corrected whole-body images (figs. 2
and 3) does not truly reflect the actual FDG-uptake.
If the images are corrected for photon attenuation by
a so-called transmission scan, which makes an estimate
of the attenuating characteristics of the patient, quan-
tification of the FDG-metabolism becomes possible.
This transmission scan, which can be performed prior
to ("cold transmission") or after ("hot transmission")
FDG-injection, will prolong the acquisition time sub-
stantially.

In absolute quantification protocolsi in which the
FDG-uptake can be expressed in mg-g™ tissue, certain
kinetic models that describe the behaviour of FDG
in a tumour cell are used [13]. This quantification,
however, requires a dynamic acquisition over the tar-
get lesion from the time of injection until a steady-
state situation is reached (usually >1 h) and arterial
blood sampling to measure the FDG input function.
Since this procedure is time-consuming, rather invasive,
and allows imaging in only one camera position (10—
15 cm of the patient), its use is limited to more
fundamental research studies (e.g. functional brain
research [14, 15]), and has little application in clinical
lung cancer imaging.

The FDG-uptake in most clinical studies is expres-
sed by the standardized uptake value (SUV). The SUV
of a lesion is a semiquantitative index of the glucose
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Fig. 2. — Protocol of nonattenuation corrected '®F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Approximately
1 h after injection of FDG, when a more or less stable distribution in the tissues has occurred, a whole-body emission scan is acquired

during 6-7 camera positions.

utilization that is obtained by normalizing the accu-
mulation of FDG in the lesion to the injected dose
and patient’s body weight [16]. Compared to the
absolute quantification, no dynamic data are necessary,
which allows evaluation of different bed positions and
thus a larger field of view in the same image session.
Initially, the transmission scan to correct for photon
attenuation could only be performed prior to FDG-
injection ("cold transmission", fig. 3). After FDG-injec-
tion, the patient had to remain without any movement
in the PET-camera for ~1 h, the time needed to obtain
a good tumour to normal tissue contrast. Then the
acquisition of the emission images, usually limited to
two or three bed positions, completed the examination.
A total camera time of nearly 3h was needed for the
entire sequence. With the introduction of "hot trans-
mission" ie. acquisition of transmission images after

Hours in PET camera

1 2 3

Fig. 3. — a) Nonattenuation corrected protocol as described in
fig. 2 (duration 40 min). b) Attenuation corrected protocol with
"cold" transmission scan before injection of 'SF-fluoro-2-deoxy-
D-glucose (FDG) (duration 150-180 min). ¢) Attenuation cor-
rected protocol with "hot" transmission scan after injection of
FDG (duration 60-80 min). PET: positron emission tomography;
O : FDG injection; : FDG-uptake phase; : transmission/
bed position; : emission/bed position.
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injection, and alternating with emission images, on the
new PET-devices, and the development of new
reconstruction methods to decrease transmission time,
whole-body attenuation corrected images can now be
obtained in a time of 60-80 min (fig. 3) [17, 18].

Dual-head gamma camera coincidence imaging. The
conclusions on the use of FDG-PET in respiratory
oncology are mainly based on studies with high
performance PET-cameras (so-called dedicated PET
scanners), characterized by a high resolution and
sensitivity. Because of the cost of a dedicated PET-
camera, a considerably cheaper alternative has been
designed by adding coincidence imaging to a dual-
head gamma camera (gamma camera imaging: GCI).
The crystals used in the gamma camera, however,
have less stopping power for high energy photons
compared to the ones used in dedicated systems,
which results in a decrease in positron emission
detection and, thus, in sensitivity [19].

Some studies have compared GCI with dedicated
PET in lung cancer, usually on a limited number of
cases, in 23 [20], 27 [21], 28 [22] and 31 patients [23].
Some series suggested that both techniques are equi-
valent. These series usually included larger lesions
visible on both techniques. In a more challenging
study, GCI detected 13 (93%) of the 14 lung nodules
seen on PET, 20 (65%) of the 31 metastatic media-
stinal nodes, and only 27 (42%) of the 64 distant
metastases [23]. Another study found an 86% overall
accuracy in staging lung cancer with FDG-PET, com-
pared to only 64% with GCI [22]. Present experience
suggests that the sensitivity of CGI clearly decreases
for lesions smaller than 2 cm. Obviously, this has
consequences for the detection of small metastatic
deposits in mediastinal nodes or distant sites. One
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should thus be very careful in extrapolating the con-
clusions on clinical decision making obtained with
dedicated PET to a situation where GCI is used.

Current clinical indications
Diagnosis of lung nodules and masses

Clinical setting. Central lung tumours can usually be
diagnosed by fibreoptic bronchoscopy. Peripheral soli-
tary pulmonary nodules (SPN) often represent a diag-
nostic challenge, especially if they are noncalcified
[24]. Absence of growth over a 2-yr period is highly
suggestive of a benign lesion, but often comparative
chest radiographs are not available [25]. Broncho-
scopic samples taken in patients with a peripheral
nodule <3 cm yield a pathological diagnosis in only
20% of the cases [26]. A transthoracic needle aspira-
tion biopsy has a higher diagnostic yield, but can be
complicated by a pneumothorax, requiring drainage
in 5-10% of procedures [27]. Moreover, the technique
is still hampered by the possibility of a false negative
test result, which carries the risk of an unacceptable
expectation in patients with early-stage lung cancer
[28, 29]. Often, more invasive procedures such as tho-
racoscopy or thoracotomy are needed for a final diag-
nosis. Consequently, a reliable, noninvasive imaging
test, able to differentiate between benign and malig-
nant nodules, could be very useful.

I8F.fluoro-2-deoxy-p-glucose positron emission tomo-
graphy data. FDG-PET has been studied extensively
in the evaluation of indeterminate lung lesions [30-41]
(fig. 4). The prospective studies in this indication are
listed in table 2. The technique has proven to be

accurate in differentiating benign from malignant
lesions as small as 1 cm. In general, there appears to
be no significant difference in accuracy when a visual
analysis of whole-body images and a semiquantitative
approach using a threshold SUV of 2.5 are compared
[31, 41, 42]. When data from table 2 are put together,
an overall sensitivity of 96% (range 83-100), a speci-
ficity of 79% (range 52-100) and an accuracy of 91%
(range 86-100) are obtained. The different results of
the series can be explained by the prevalence of malig-
nancy in the study population, which is the result of the
varying epidemiology of solitary pulmonary lesions in
different areas of the world (e.g. more histoplasmosis
in North-America than in Europe). Another factor is
the inclusion criteria of the different series (e.g. a lo-
wer sensitivity can be expected in series on very small
nodules).

A critical mass of metabolically active malignant
cells is required for PET diagnosis. Therefore, false
negative findings can occur in lesions <10 mm [32, 34,
38, 39, 43], in tumours with low metabolic activity (e.g.
carcinoid tumours [34, 44]), or in bronchioloalveolar
cell carcinoma [43, 45-47]. It should also be mentioned
that the sensitivity of FDG-PET is probably slightly
less in the lower lung fields, due to respiratory motion.
Finally, in small lesions (mostly for lesions <15mm,
depending on the resolution of the PET system) the
FDG-uptake is underestimated because of partial
volume effects (i.e. the activity of the lesion is averaged
with the activity of a rim of normal tissue surrounding
the lesion).

FDG-uptake is not specific for malignancy, and false
positive findings can occur in inflammatory conditions
such as bacterial pneumonia [48], pyogenic abscess or
aspergillosis, granulomatous diseases such as active

Fig. 4. — a) and b) Suspected coin lesion in the left upper lobe on computed tomography (CT), clearly '*F-fluoro-2-deoxy-D-glucose
(FDG)-positive on positron emission tomography (PET)-images. Peripheral adenocarcinoma at resection. ¢) and d) Suspected coin
lesion in the right upper lobe on CT, unremarkable on PET-images. Necrobiotic nodule at resection.
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Table 2. — Prospective series on the use of '®F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in the
differential diagnosis of lung nodules or masses

First author [Ref.] Year n Method of analysis Sensitivity Specificity Accuracy Prevalence
% % % %
SAZON [30] 1996 107 Visual 100 52 89 77
Lowk [31] 1998 89 Visual 98 69 89 67
Semiquantitative 92 90 91
DUHAYLONGSOD [32] 1995 87 Semiquantitative 97 82 92 68
GUPTA [33] 1996 61 Semiquantitative 93 88 92 74
NACKAERTS [34] 1997 52 Semiquantitative 94 82 90 67
PATZ [35] 1993 51 Semiquantitative 89 100 92 65
BURY [36] 1996 50 Visual 100 88 96 66
SLOSMAN [37] 1993 36 Visual 94 60 89 86
DEWAN [38] 1993 30 Visual 95 80 90 67
KuBortAa [39] 1990 22 Semiquantitative 83 90 86 55
GUPTA [40] 1992 20 Semiquantitative 100 100 100 65
GuUPTA [41] 1998 19 Visual 100 100 100 63
Semiquantitative 83 100 89

Visual: visual interpretation on whole-body images; Semiquantitative: using a threshold of a semiquantitative measure of
FDG-uptake (e.g. standardized uptake value); prevalence: proportion of malignant cases in the total group of studied nodules.

sarcoidosis [49], tuberculosis, histoplasmosis, coccidio-
mycosis, Wegener's disease and coal miner’s lung. In
these lesions, the FDG-uptake has been attributed to an
increase in granulocyte and/or macrophage activity
[50].

For some lesions with equivocal findings on whole-
body images or with a SUV 2-3, the use of dynamic
measurement of FDG-uptake can be of additional
benefit [41] to discriminate inflammatory from malig-
nant lesions. The substantially longer scan-time requir-
ed for these dynamic studies is, however, not justifiable
in the clinical routine.

In North-American series, it was shown that FDG-
PET reduced the number of patients with an indeter-
minate SPN undergoing unnecessary resection of a
benign lesion by 15%. This resulted in a decrease in
cost of US$1,192 per patient [S1, 52]. It is not yet
clear whether this cost saving will also be present in
Europe. In a Japanese study, the use of FDG-PET
was unlikely to be cost-effective, maybe because of
the different prevalence of malignancy in patients
with a SPN in Japan and the differences in cost of
surgical procedures [53].

Clinical application of *F-fluoro-2-deoxy-p-glucose
positron emission tomography. Possibilities and limi-
tations of FDG-PET in the patient with a SPN
should be considered. The key question for the clini-
cian is: "below which SUV can an SPN be considered
benign and is expectation justified?" Most literature
series use the criterion that an SPN with a SUV
<2.5 (or with a low uptake on whole-body images) is
likely to be benign. With its sensitivity of 96%, FDG-
PET will indeed have a very good negative predic-
tive value, and will be able to exclude malignancy
correctly in the vast majority of cases. In these pati-
ents, a thoracotomy can be avoided, and a repeat
chest radiograph or CT scan at 6 or 12 months can
be used to confirm the absence of growth.

Difficult situations, where the critical mass of me-
tabolically active malignant cells required for an SUV
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>2.5 is not always present, are: 1) Lesions <10 mm;
other clinical (age, smoking history) and radiological
(spiculation) factors determining the likelihood of
malignancy should be considered where a specific
CT-study [54, 55], very close follow-up, or more inva-
sive tests can be appropriate. 2) Tumours with low
metabolic activity; carcinoid tumours are the most
common example, but this tumour usually has a cent-
ral location, amenable to bronchoscopic biopsy [56]. 3)
Bronchioloalveolar cell carcinoma; in most of these
cases, other features, especially on CT [57], will be
suggestive for the diagnosis, and will point at the
scrutiny needed for interpretation of the FDG-PET
results. With its specificity of 79%, FDG-PET will also
have a good positive predictive value, but not as good
as its negative predictive value. A positive scan is
possible in the previously listed inflammatory condi-
tions, which should be excluded by appropriate tests
in case of clinical suspicion. In case of doubt, lesions
with increased FDG-uptake should, however, be con-
sidered malignant until proven otherwise, and manag-
ed accordingly.

Locoregional staging: primary tumour (T status) and
locoregional lymph nodes (N Status)

Clinical setting. Accurate staging is essential to
make estimates of prognosis, and to choose the best
combination of treatment modalities such as surgery,
radiation and chemotherapy, in an attempt to im-
prove survival and optimize the use of imaging
resources.

Extension of the primary tumour is usually assessed
by thoracic CT, occasionally complemented by MRI,
e.g. 1n situations where superior sulcus extension or
relationship with the heart or large vessels is of im-
portance [58]. With their exquisite anatomical detail,
modern CT and MRI are the preferred tests to evaluate
the T-factor. FDG-PET offers no extras in this respect,
due to its limitations in spatial resolution and ana-
tomical detail within the image.
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Perhaps even more important for the prognosis is
the locoregional lymph node (LN) spread. Patients
without malignant LNs in the mediastinum are usually
treated with straightforward surgical resection. Pati-
ents with diseased mediastinal LNs are candidates for
induction chemotherapy up-front, followed by surgery
and/or radiotherapy [59-63]. It is therefore of consi-
derable clinical interest to evaluate these mediastinal
LNs as accurately as possible.

CT is the most commonly used noninvasive staging
method of the mediastinum, but is far from satisfactory
and less accurate than invasive surgical staging (ISS)
[64-67]. In prospective data from the Radiological
Diagnostic Oncology Group, the sensitivity and speci-
ficity of thoracic CT were only 52% and 69%, res-
pectively [68]. In the authors’ (the University Hospital
Gasthuisberg), the best results were obtained when LNs
>1.5cm at their maximal cross-sectional diameter were
considered to be metastatic [69]. Using this criterion,
the sensitivity was 69% and the specificity 71%. Given
this very moderate level of accuracy of CT, ISS by
mediastinoscopy remained, until recently, the only
adequate tool for mediastinal LN staging. FDG-PET
as a noninvasive tool for determination of LN spread
has thus been examined extensively.

I8F.fluoro-2-deoxy-p-glucose positron emission tomo-
graphy data. An important number of prospective
studies have compared the performance of CT and
FDG-PET in mediastinal LN staging in potentially
operable NSCLC [30, 70-85] (fig. 5). In all but one
[82] of these studies, FDG-PET proved to be more
accurate than CT. Quite evidently, a recent meta-ana-
lysis has confirmed this finding [86]. Additionally,
FDG-PET can indicate suspect LNs in stations not
amenable to ISS by mediastinoscopy.

Most of the studies have reported the results on a
per patient basis, and compared the accuracy of CT
and FDG-PET in distinguishing between presence (N2—
N3) or absence (NO-N1) of malignant mediastinal
LNs (table 3). When the results from table 3 are put
together, an overall sensitivity of 89% (range 67-100),
a specificity of 92% (range 79-100) and an accuracy of
90% (range 78-100) are obtained for FDG-PET. For
CT, the results are a sensitivity of 65% (range 20-86), a
specificity of 80% (range 43-90), and an accuracy of
75% (range 52-79). The information in table 3 also
shows that studies in which FDG-PET images are
interpreted with the aid of CT (complementary) usually
have slightly better results than those in which FDG-
PET images are read independently. In the two studies,
that directly compared these two methods of inter-
pretation, an additional gain in sensitivity was noted:
from 67-93% [75] in one, and from 73-82% in the other
[77]. This difference is the expression of the fact that the
precise anatomic information on CT is complementary
to the metabolic information images of FDG-PET,
which lack precise anatomical detail. Therefore, the
correlative interpretation will help in the distinction
between, for example, central tumours and adjacent
LNs, or between adjacent LN stations. This difference
is of critical importance if the distinction is to be made
between hilar and adjacent right tracheobronchial or
subaortic nodes, and thus between N1 (operable) and
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Fig. 5. — a) Computed tomography (CT)-image of a patient with
left upper lobe tumour without suspect adenopathy in the med-
iastinum (NO-disease). b) and c¢) Transaxial and frontal positron
emission tomography (PET)-images suggest N3-disease with left
and right paratracheal lymph node metastasis (arrows), which
was confirmed at mediastinoscopy.

N2 (nonoperable) disease. A study in the authors’
centre addressed the question of whether digitally fused
CT and FDG-PET images (so-called anatometabolic
fusion images) could further increase the accuracy of
noninvasive LN staging [74]. It was found that, for an
experienced reader, the gain in accuracy compared to
visual correlation was very small, since the errors due to
minimal tumour load (false negatives) or inflammation
(false positives) were not corrected.

In one of the authors’ studies, it was examined if
the use of an SUV threshold for LNs improved the
results, compared to simple visual analysis [72]. The
best SUV threshold to distinguish benign from malig-
nant LNs was 4.4, but the analysis with the SUV
threshold did not prove to be superior to the simple
visual reading.
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Table 3. — Prospective comparator studies of computed tomography (CT) and '®F-fluoro-2-deoxy-D-glucose positron
emission tomography (FDG-PET) in mediastinal lymph node staging in nonsmall cell lung cancer, reporting the results per

patient
First author [Ref.] Year n  Method of analysis  Sensitivity  Specificity = Accuracy  Prevalence  p-value
% % % %
SAUNDERS [70] 1999 84 Independent 71 97 92 18 NR
CT 20 90 77
VALK [71] 1995 76 Complementary 83 94 91 32 <0.01
63 73 70
VANSTEENKISTE [72] 1998 68 Complementary 93 95 94 41 0.0004
75 63 68
KERSTINE [73] 1999 64 Independent 70 86 84 25 <0.001
CT 65 79 76
VANSTEENKISTE [74] 1998 56 Fusion images 89 82 86 50 0.04
Complementary 89 82 86
86 43 64
VANSTEENKISTE [75] 1997 50 Independent 67 97 88 30 0.004
Complementary 93 97 96
67 59 64
BURY [76] 1996 50 Independent 90 86 NR 32 <0.05
CT 72 81 NR
WENG [77] 2000 50 Independent 73 94 87 38 0.03
Complementary 82 96 91
73 77 76
STEINERT [78] 1997 47 Independent 92 97 96 28 0.01
CT 54 88 79
PATZ [79] 1995 42 Independent 92 100 95 NR NR
CT 58 80 68
SAZON [30] 1996 32 Complementary 100 100 100 50 0.01
81 56 69
CHIN [80] 1995 30 Complementary 78 81 80 30 NR
CT 56 86 77
Scortr [81] 1996 27 Complementary 100 100 100 33 0.03
CT 67 83 78
ALBES [82] 1999 24 Independent 77 79 78 66 NR
CT 77 79 74
WAHL [83] 1994 19 Independent 82 81 81 NR <0.05
CT 64 44 52

Independent: interpretation of PET without CT; Complementary: interpretation with aid of CT; Fusion images: digital fusion
of CT and PET images; prevalence: proportion of cases with diseased mediastinal lymph nodes in the total group of studied
patients; p-value: significance of the difference in performance between CT and PET, usually examined with a McNemar test;

NR: not reported.

Some studies have reported the results on a per LN
station basis, and compared the accuracy of CT and
FDG-PET in the detection of metastatic deposits in
the different LN stations [72, 74, 78, 79, 81, 84, 85]
(table 4). These studies have convincingly demonstrated
that the superiority of FDG-PET can be explained by
the more frequent correct identification of "small
malignant nodes" and "large benign nodes". Indeed,
the moderate accuracy of CT in LN staging is explained
by the fact that size is a relative criterion. LN can be
enlarged due to infectious or inflammatory causes, and
small-sized nodes can nonetheless harbour metastases
[64, 67-69], resulting in overstaging as well as under-
staging.

False negative findings can occur when the tumour
deposit in the mediastinal nodes is small. In the
authors’ experience, this was mainly the case in some
patients with minimal areas of metastatic cells in LNs
with a maximal diameter rarely exceeding 2.5 mm
(unpublished data). False positive images are possible
in LNs containing anthracosilicosis [36] or inflamma-
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tory tissue with high metabolic activity. In some cases,
however, no particular pathological abnormalities ex-
plaining the false positive FDG image can be found
(unpublished data).

Clinical implication of "® F-fluoro-2-deoxy-p-glucose po-
sitron emission tomography. How should mediastinal
FDG-PET be implemented in clinical practice? In
nonmetastatic NSCLC patients, survival results after
resection are worthwhile in three groups: 1) those
without metastasis in mediastinal lymph nodes at
thoracotomy; 2) those with so-called "unforeseen N2"
i.e. metastasis in ipsilateral mediastinal lymph nodes
found at thoracotomy after a negative preoperative
mediastinoscopy [87-92] and; 3) those with so-called
"minimal N2" detected at mediastinoscopy (according
to the International Association for the Study of
Lung Cancer [93], minimal N2 is defined as "one
positive lower mediastinal nodal station excluding
subcarinal adenopathy"). Mediastinoscopy, therefore,
plays a central role in the preoperative staging of
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Table 4. — Prospective comparator studies of computed tomography (CT) and '®F-fluoro-2-deoxy-D-glucose positron
emission tomography (FDG-PET) in mediastinal lymph node staging in nonsmall cell lung cancer, reporting the results per

lymph node station

First author [Ref.] Year n Method of analysis  Sensitivity ~ Specificity =~ Accuracy  Prevalence  p-value
% % % %
VANSTEENKISTE [72] 1998 690 Complementary 89 99 98 7 0.002
CT 47 96 92
VANSTEENKISTE [74] 1998 493 Complementary 67 97 93 12 0.002
Fusion images 67 97 93
CT 50 93 87
BERLANGIERI [84] 1999 201 Independent 80 97 95 10 <0.05
CT 65 90 87
STEINERT [78] 1997 191 Independent 89 99 97 25 0.007
CT 57 94 85
Scorr [81] 1996 75 Complementary 100 98 99 13 0.04
60 94 85
SASAKI [85] 1996 71 Independent 76 98 93 24 <0.05
CT 65 87 82
PATZ [79] 1995 62 Independent 83 82 82 37 NR
CT 43 85 69

n: number of studied lymph node stations; Independent: interpretation of PET without CT; Complementary: interpretation
with aid of CT; Fusion images: digital fusion of CT and PET images; prevalence: proportion of malignant lymph node stations
in the total group of studied lymph node stations; p-value: significance of the difference in performance between CT and PET,

usually examined with a McNemar test; NR: not reported.

potentially operable NSCLC: it will be negative in
groups 1 and 2, while it will confirm "minimal N2" in
group 3. If mediastinoscopy shows "more than mini-
mal N2" or N3 disease, the survival results of direct
surgery are marginal [91, 94, 95], mainly due to the
development of systemic relapses [96]. These patients
will be treated in a multimodality protocol, including
induction chemotherapy followed by radiotherapy
and/or surgery [59-63].

The issue whether FDG-PET is able to replace
mediastinoscopy involves two questions. 1) Is it pos-
sible to proceed directly to thoracotomy in the case of
a negative mediastinal PET? In the authors’ view, yes,
since mediastinal PET has a very high negative pre-
dictive value in the exclusion of N2 or N3 disease.
Occasionally, a patient with a false negative media-
stinal PET proceeds to straightforward thoracotomy,
but in these cases "minimal N2" is found, where, as
already mentioned, a reasonable prognosis after sur-
gical resection can be expected [88]. 2) Can we leave
out straightforward thoracotomy in the case of a
positive mediastinal PET? In the authors’ view, no.
Although the positive predictive value in the confirma-
tion of N2 or N3 disease is also high, mediastinoscopy
is still advised to prove N2 or N3 disease in patients
with positive mediastinal nodes on PET. Mediastinal
mapping by mediastinoscopy is justified before the
start of a chemotherapy induction protocol, and is
needed to ensure that no single patient with NO- or N1-
disease is denied the chance of cure by direct surgical
resection based on a false positive PET.

Even when only the high negative predictive value of
mediastinal PET is implemented, this resulted, in the
authors’ experience, in nearly a 50% reduction of the
number of mediastinoscopies. In the USA, it has been
suggested that the use of a combined FDG-PET and
CT strategy is more cost-effective than CT alone in
the staging of NSCLC [52, 97].

ERJ (vansteen.3d)

Extrathoracic staging (M status)

Clinical setting. The finding of extrathoracic metastases
implies that a patient is no longer amenable to long-term
remission or cure. Standard staging for extrathoracic
disease is based on clinical and biological factors, and
imaging tests, such as CT, ultrasound, or bone scin-
tigraphy. Whether these examinations need to be
performed in every patient remains controversial.
This issue is beyond this review, and the authors only
refer to some recent guidelines [98, 99].

Current standard staging is far from perfect. After
radical treatment for apparently localized disease, the
present authors have found that an important pro-
portion of patients, ranging from 20 [100] to 22%
[101, 102], will nonetheless have an early distant relapse.
This means that detection of micrometastases that are
already present at the time of initial staging is not
possible [103]. The most common sites of metastasis are
the adrenal glands, bones, brain, and liver [104]. Up to
35-45% of the patients will have detectable distant
disease at presentation [105].

ISF—ﬂuoro—Z—deoxy-D-glucose positron emission tomo-

: ‘e 99m
graphy data. In the detection of bone metastasis, ~ " -
technetium-methylene-diphosphonate ~ (°**™Tc-MDP)
scintigraphy is considered to be the most practical
technique for assessing the entire skeleton. It has a
reasonable sensitivity of ~90%, but the clinical inter-
pretation is hampered by its low specificity (false
positive findings in arthrosis, arthritis, post-traumatic
abnormalities, etc.). Often, additional studies such as
bone radiographs, bone CT, or bone MRI are nee-
ded. One study pointed at an equivalent sensitivity of
FDG-PET and *™Tc-MDP bone scintigraphy, but
with a much higher specificity for FDG-PET (98%
versus 61%) [106]. In another series, FDG-PET pro-
ved to be more sensitive than *™Tc-MDP bone
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scintigraphy, and allowed better differentiation between
benign and malignant lesions [107]. Whether FDG-PET
can replace *™Tc-MDP bone scintigraphy remains an
open question. Studies in breast cancer have indicated
false negative FDG-PET findings in bone metastases,
especially in osteoblastic lesions [108, 109]. Obviously,
more data are needed to answer this question. Ano-
ther point in this discussion is the fact that a whole-
body FDG-PET gives an image from the head to
just below the pelvis, while a standard **™Tc-MDP
bone scintigraphy images the entire skeleton.

Adrenal masses are found in up to 20% of NSCLC
patients at initial presentation [110-112]. The finding
of an isolated adrenal mass on CT is often a diag-
nostic challenge. About two-thirds of cases could be
explained by an asymptomatic adrenal adenoma in
some series [110, 113]. An adrenal mass, therefore does
not imply inoperable disease, but rather the need for
further (pathological) examination by, for example,
puncture or biopsy of the lesion [113]. FDG-PET can
be a useful adjunct to other imaging modalities of the
adrenals. The available (small) series point at a high
sensitivity of FDG-PET in the detection of adrenal
metastases [114-116]. An equivocal lesion on CT with-
out FDG-uptake on PET will usually not be meta-
static. However, it is necessary to be very careful
with the interpretation of small lesions. Indeed, the
available series have studied lesions with an average
diameter of 30 mm. Specificity in the available data
lies 80-100%, because some false positive findings
have been described [114]. In the case of an isolated
FDG-positive adrenal lesion, pathological proof is
still required before a decision towards inoperable
disease is made.

The evaluation for liver metastasis is usually less
difficult because the liver is less frequently an isolated
site of disease, and because the combination of ultra-
sonography and CT can solve most cases [117]. There
are no series that specifically focus on the performance
of FDG-PET in the evaluation of liver lesions in
NSCLC patients. Data from studies on staging of
NSCLC in general, suggest that FDG-PET is more
accurate than CT in liver staging, mainly because of
better specificity [118, 119]. A series on examination of
the liver in patients with different primary tumours
reported a sensitivity of 97% and a specificity of 88%
for FDG-PET, in comparison to 93% and 75%,
respectively for CT (a nonsignificant difference) [120].
Similar findings have been reported in studies on
colorectal [121, 122], pancreatic [123] or oesophageal
tumours [124]. False positive findings have been des-
cribed in some liver abscesses [125]. The main advan-
tage of FDG-PET is its ability to differentiate hepatic
lesions that remain indeterminate by conventional
studies: in one study, FDG-PET accurately indicated
liver metastases in 11 patients, two with negative and
nine with equivocal conventional imaging. On the
other hand, FDG-PET could exclude metastasis in
four cases with suspect conventional imaging [120].

In the authors’ experience, FDG-PET was also of
help in some patients in the detection of metastases
that otherwise could have escaped notice, for example,
small nodules in the other lung, soft tissue lesions,
retroperitoneal LNs, hardly palpable supraclavicular
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LNs, etc. Finally, FDG-PET also pointed at a
coexistent asymptomatic second primary tumour,
mainly of colorectal origin.

FDG-PET is not suited for the detection of brain
metastasis. The sensitivity of FDG-PET in the detec-
tion of brain lesions is low, because the surrounding
normal brain tissue has a high glucose uptake. CT and/
or MRI remain the standard imaging tests in this
indication [126].

Fig. 6. — Importance of computed tomography-positron emission
tomography (CT-PET) correlation. a) Two suspect lesions
(arrows) are present in the right lung on CT. b) Two suspect
lesions in the right lung (arrows) are withheld on PET-images
(NO-disease?). ¢) Correlation locates one of the '|F-fluoro-2-
deoxy-D-glucose (FDG) hot-spots in the largest parenchymal
lesion and the other one in a mediastinal node anterior of the
superior vena cava (N2-disease). The small peripheral lung
nodule does not exhibit FDG-uptake.
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Clinical implication of ' F-fluoro-2-deoxy-p-glucose po-
sitron emission tomography. Whole-body FDG-PET
improves the imaging of metastases for two reasons.
1) It is able to detect metastatic lesions that would
have been missed on conventional imaging, or in clini-
cally hidden or difficult areas (bone, liver, soft tissue,
some LN, efc.) (fig. 7). Since most of the organ-spe-
cific literature series are still on small numbers of
patients and contain some false positive findings, it
should be a golden rule to obtain verification by
other methods or by tissue sampling of an isolated
positive finding that determines resectability. 2) It is
able to exclude malignancy in lesions that are equi-
vocal on conventional imaging (fig. 8). Exclusion of
malignancy by FDG-PET should be done with cau-
tion in case of small lesions, e.g. adrenal nodules of
<l cm.

Because whole-body FDG-PET is able to stage both
intra- and extra-thoracic sites in one examination, and
because of its greater accuracy than conventional ima-
ging, this technique is reported to change patient
management in 19% [119], 20% [118], 30% [71], 31%
[127], or even 41% [128] of patients. Numerous data
indicate that FDG-PET can complement conventional
imaging, but the authors clearly do not have enough
data to accept that FDG-PET can replace it. In con-
trast with the large amount of data on locoregional
staging, most of the organ-specific studies are small,
and did not include an adequate number of small
lesions, which truly challenge the technique. Further
studies of this type have to be awaited.

Other applications

Radiotherapy planning. Although most of the FDG-
PET studies of locoregional NSCLC staging were
performed in a preoperative setting, the use of this
technique could be of equivalent importance in ra-
diotherapy planning in nonmetastatic patients not

Fig. 7. — Patient referred for induction treatment for presumed
stage ITIA-N2 disease. On '8F-fluoro-2-deoxy-D-glucose positron
emission tomography (FDG-PET), a) mediastinal lymph node
spread is very important, and b) unsuspected left adrenal and c)
abdominal lymph node lesions are found.
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suitable for surgery e.g. due to cardiopulmonary
limitations. The extent of the tumour will not only
influence the treatment intention, ie. curative or
palliative, but also the volumes to be treated and
therefore the toxicity to be expected. Indeed, several
authors have suggested that a dose-volume effect for
radiopneumonitis exists [129-132].

Classical radiotherapy planning uses conventional
imaging such as chest radiography and CT to des-
cribe the tumour and to draw the target volume for

Fig. 8. — a) Patient referred for chemotherapy for presumed
TINOMI adenocarcinoma (A) with lumbar pain due to adrenal
metastasis on computed tomography (CT). b) Positron emission
tomography (PET)-images demonstrate '*F-fluoro-2-deoxy-D-glu-
cose (FDG)-uptake in the primary tumour only. Surgical ex-
ploration revealed an adrenal adenoma with central bleeding (B).
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irradiation. The main limitations of this method are
the poor demarcation of some tumours on CT, and
the inability of CT to distinguish between benign
and malignant LNs. In one study including 20 pati-
ents, twelve had poorly demarcated tumours. CT and
FDG-PET volumes corresponded in seven patients,
but in three of 12 patients, the CT abnormalities were
larger than on FDG-PET, and in two of 12 patients
the abnormalities on FDG-PET extended outside the
region of CT changes [133]. Another study pointed at
the substantial reduction in radiation fields by FDG-
PET in cases with postobstructive atelectasis [134].

As for the effect of LNs, a simulation study on the
potential impact of FDG-PET on the radiation treat-
ment plan of 105 patients with NSCLC was carried
out at the authors’ centre [135]. For 73 of these pati-
ents, with positive LNs on CT and/or on FDG-PET,
a theoretical study was performed in which for each
patient the gross tumour volume (GTV) was defined
based on CT and on PET-CT data. For each GTV, the
completeness of tumour coverage was assessed, using
the available surgical pathology data as gold standard.
Tumour coverage improved from 75% when the CT-
GTV was used, to 89% with the PET-GTV (p=0.0005).
In 45 patients (62%) the information obtained from
FDG-PET would have led to a change of the treatment
volumes. It was concluded that assessment of locor-
egional LNs by FDG-PET improved tumour coverage.
In selected patients, it also reduced the volume of
normal tissues irradiated, and thus toxicity, opening
possibilities for treatment intensification. Similar find-
ings were reported in smaller studies [134, 136, 137].
Future prospective comparative studies are indicated to
examine whether these advantages of combined CT-
PET planning will actually result in reduced toxicity,
better local control, and increased survival.

Response evaluation postradiotherapy. Response after
radiotherapy is usually evaluated by comparing tu-
mour volumes on chest radiographs or CT images
pre- and post-therapy. An important limitation of
this method lies in the fact that changes in tumour
viability (and thus prognosis) do not necessarily cor-
relate with changes in volume. Data on the possible
extra value of FDG-PET in NSCLC in this setting
are still limited. In one study, tumours with a high
FDG-uptake responded better to radiotherapy than
those with a low uptake [138]. Other series suggested
that there was a correlation between volume changes
on CT and decrease of FDG-uptake on PET, but
that a persistently elevated FDG-uptake after radio-
therapy predicted an early relapse, irrespective of the
volume changes on CT [138, 139].

Response evaluation post (induction) chemotherapy. 1f
the mediastinoscopy in potentially operable NSCLC
patients is positive for N2-disease, the results of direct
surgical resection (or radiotherapy) are very disap-
pointing [88, 91, 94, 140], mainly due to systemic
relapses [96]. Rapidly increasing amounts of data
indicate that effective systemic therapy (induction
chemotherapy), followed by resection with media-
stinal dissection, is a better treatment option for these
patients [59-63]. Many authors pointed out that

ERJ (vansteen.3d)

clearance of viable tumour cells in the mediastinum
(so-called downstaging) is very important for the
long-term prognosis [141-146]. It was further stressed,
in the Memorial-Sloan-Kettering series on induction
chemotherapy, that the estimated 5-yr survival rate
of patients with a pathological complete response was
54%, while it was only 15% in those without patho-
logical complete response [147].

After induction chemotherapy, one should ideally
be able to select the patients with clearance of me-
diastinal involvement for radical surgical treatment,
and to avoid it in the others. CT has not proven to be a
good tool to evaluate downstaging after induction
chemotherapy. It is well known that patients with little
decrease in measurements on CT can nonetheless have
mediastinal LN downstaging, while those with an
important decrease can still have viable tumour in their
mediastinal LN. On the other hand, a remediastino-
scopy is hardly technically feasible, due to fibrosis
caused by the chemotherapy and by the extensive
sampling during the first mediastinoscopy.

In a prospective pilot study, the authors examined
if FDG-PET could be a reliable noninvasive technique
to solve this problem [148]. FDG-PET proved to be
100% accurate in the evaluation of downstaging (versus
67% for CT). Furthermore, outcome after the entire
combined modality treatment was correlated with the
findings on the postinduction FDG-PET; survival
was significantly better in patients with mediastinal
clearance on FDG-PET (p=0.01) or with >50% dec-
rease of the SUV of the primary tumour (p=0.03) after
induction chemotherapy (fig. 9). A larger prospective
multicentre study is ongoing. If these preliminary
findings can be confirmed, PET could become a
useful noninvasive tool to select patients for intensive
locoregional treatment after induction chemotherapy.

Diagnosis of recurrence. The interpretation of a post-
treatment chest radiograph or CT can be hampered
by anatomical changes such as distortion of bronchi,
infiltration of the lung parenchyma or mediastinum,
or fibrotic changes, which may be difficult to distin-
guish from tumour relapse. The exact differential diag-
nosis can be of importance, especially in the light of
the expanding possibilities for second-line treatment
[149-153].

In one study, FDG-PET gave a correct positive result
in 16 indeterminate lung lesions after previous lung
tumour resection [32]. Other studies in patients whose
CT images were suspect of recurrence have pointed at
the possible distinction between post-therapy scarring
and new viable tumour with sensitivity for FDG-PET
97-100%, specificity 62-100%, and accuracy 78-98%
[133, 154-158]. False positive studies may occur if the
FDG-PET is performed shortly after surgery or
radiotherapy. These false positive findings are ascribed
to either radiation pneumonitis or macrophage glyco-
lysis in tumour necrosis [157]. An interval 4-6 months
after therapy is recommended to be sure that in-
flammatory changes have subsided, so that adequate
assessment of tumour viability is possible.

Prognosis. The TNM-staging is the most important
tool to estimate the prognosis of NSCLC patients. It
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Fig. 9. — a) Computed tomography (CT) before and b) after induction chemotherapy: partial response (70% decrease in bi-dimensional
measuremenltg. Positron emission tomography (PET) c) before and d) after induction: decrease in volume confirmed, but only a -20%

decrease in

does not, however, always give a satisfactory explana-
tion for differences in survival. Resected stage I
NSCLC is a typical example; many patients are
cured, but some have an early relapse and die. Recent
advances in molecular biology [159] have already
helped to increase understanding of different patterns
of survival in resected stage I NSCLC [160, 161]. For
instance, in the Boston experience based on a molecu-
lar-biologic staging including angiogenesis, proto-onco-
gene erbB-2, suppressor gene p53, and the proliferation
marker KI-67, a 5-yr survival of 81% was found in
resected stage I NSCLC patients without any adverse
marker, while it was only 49% in those with >3
markers [162].

Since NSCLC is characterized by important car-
bohydrate metabolic derangement’s, which have also
been identified as independent prognostic factors cor-
related with poor treatment response and survival [163,
164], measurement of the glucose metabolism in vivo
with FDG-PET might have prognostic importance.
This hypothesis is further substantiated by the finding
that FDG-uptake in NSCLC cells is correlated with
growth rate and proliferation capacity [165].

In one of the authors’ studies, it was examined
whether the SUV of the primary tumour at baseline was
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F-fluoro-2-deoxy-D-glucose (FDG)-uptake. This patient developed an early systemic relapse.

predictive for the prognosis after treatment in 125
NSCLC patients [166]. It was found that an SUV of the
primary tumour >7 had independent prognostic value,
apart from the performance status and stage. In
patients with a resected T1 tumour, the 2-yr survival
was 86% if the SUV was <7, and 60% if >7. Similar
findings, based on a cut-off SUV of 10 were reported
by another group [167]. These researchers also exa-
mined the prognostic value of FDG-PET after primary
treatment [168]. They found that patients with a
positive  FDG-PET after initial treatment had a
median survival of 12 months, in contrast with those
with a negative FDG-PET, of whom 85% were still
alive at the time of analysis, after a median follow-up
of 34 months (p=0.002).

Conclusions and future directions. The indication of
FDG-PET as a complimentary tool to CT in the
diagnosis and staging of NSCLC gradually gains
widespread acceptance and also reimbursement in
many European countries. A summary of its possible
clinical implementation is depicted in figure 10.
Further development is expected when commercial
isotope distributors will be able to deliver FDG, so
that an on-site cyclotron is no longer a prerequisite.
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Conventional imaging:
Negative for M*

Conventional imaging:
Equivocal for M*

| FDG-PET |

[ I
Negative for LN's Positive for LN's

Negative for M* Negative for M*

Positive for M* Positive for M* Negative for M*

Negative Positive
mediastinoscopy| |mediastinoscopy

Pathology See conventional imaging:
if single lesion Negative for M*

Fig. 10. — Algorithm for the implementation of '*F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in nonsmall

cell lung cancer (NSCLC). LN: lymph node; M*: metastasis.

BEDG has a half-life of 110 min, so a practical dis-
tribution radius 200-300 kilometres should be fea-
sible. Another factor will be the more widespread
availability of PET-cameras. The question whether
the use of dual-head GCI will be a useful substitute
still requires a large amount of carefully controlled
clinical studies. It is also expected that the resolution
and performance of both dedicated PET and dual-
head GCI will still improve in the future [169]. The
use of FDG-PET in the current clinical indications
now needs further validation in multicentre, large-
scale, randomized studies, focusing mainly on treat-
ment outcome parameters, on the question whether
FDG-PET actually improves survival prospects and
on cost-efficacy issues. Other indications, such as
evaluation of radio- or chemotherapy, radiotherapy
planning, recurrence detection and prognosis deter-
mination need further well designed prospective in-
vestigations in more specialized centres.

Finally, a whole new field using PET in molecular
applications is under exploration. FDG, with it’s pos-
sibility to study tumour glucose metabolism, has paved
the way for PET in clinical oncology. Several other
radiopharmaceuticals can also be used to study pro-
cesses such as blood flow (H,'°0), protein metabolism
('c- methlonme 'C-choline) and carbohydrate meta-
bolism (!'C-acetate) [170]. One step further is the study
by PET of cellular functions such as receptors, tran-
sport proteins or intracellular enzymes. The use of PET
to study the efficacy of gene therapy in cancer is one
example [171, 172]. Another example is how PET could
be used as a guide in the selection or early assessment of
anticancer therapy. Nowadays, it is difficult to predict
response to chemotherapy and the choice of a che-
motherapy regimen is mainly empirical. It is necessary
to wait for the repeated chest radiograph or CT after
several cycles before it can be determined whether
therapy actually worked, thus, losing time and perhaps
exposing the patient to needless toxicity. Ideally, it
should be known what happens at the cellular level.
Some years ago it was already reported that FDG-PET
could demonstrate a significant decrease in tumour
glucose metabolism after effective treatment for breast
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cancer, with a reduction in the glucose metabolism
before the radlologlcal decrease in tumour size [173].
PET with ''C-thymidine or its analogues could theo-
retically evaluate the efficacy of a treatment very shortly
after the first dose, since ''C- thymidine is rapidly
incorporated into DNA, and thus mirrors prolifera-
tion of neoplastic cells [174]. After demonstration of
the possibility of PET imaging with thymidine, the
feasibility of measurmg the response to chemotherapy
in humans with ''C-thymidine was recently reported
[175].

Problems still to be solved relate to the short half-life
of ''C-thymidine (creating practical problems) and the
rapid catabolism of thymidine in human cells, which
creates major noise in the positron emission tomo-
graphy image, unless very complex interpretation
algorithms are used. Extensive research is ongoing to
test new thymidine analogues with a longer half-life,
with the same deoxyribonucleic acid incorporation
properties, but minimized intracellular breakdown [176,
177]. If this concept can be brought into practice, it
would enable us to tailor therapy for a specific patient,
and move faster ahead in testing new drugs in phase I
and II clinical studies, by using the endpoint of
subclinical positron emission response response [178].
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